Display options
Share it on

Sci Rep. 2017 Aug 31;7(1):10248. doi: 10.1038/s41598-017-10589-3.

Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

Scientific reports

Lieselotte Obst, Sebastian Göde, Martin Rehwald, Florian-Emanuel Brack, João Branco, Stefan Bock, Michael Bussmann, Thomas E Cowan, Chandra B Curry, Frederico Fiuza, Maxence Gauthier, René Gebhardt, Uwe Helbig, Axel Huebl, Uwe Hübner, Arie Irman, Lev Kazak, Jongjin B Kim, Thomas Kluge, Stephan Kraft, Markus Loeser, Josefine Metzkes, Rohini Mishra, Christian Rödel, Hans-Peter Schlenvoigt, Mathias Siebold, Josef Tiggesbäumker, Steffen Wolter, Tim Ziegler, Ulrich Schramm, Siegfried H Glenzer, Karl Zeil

Affiliations

  1. Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.
  2. Technische Universität Dresden, 01062, Dresden, Germany.
  3. European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
  4. High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA.
  5. University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
  6. Leibniz Institute of Photonic Technology e.V., 07745, Jena, Germany.
  7. Universität Rostock, Albert-Einstein-Straße 23-24, 18059, Rostock, Germany.
  8. Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany.
  9. Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany. [email protected].

PMID: 28860614 PMCID: PMC5579044 DOI: 10.1038/s41598-017-10589-3

Abstract

We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 10

References

  1. Rev Sci Instrum. 2016 Nov;87(11):11D827 - PubMed
  2. Phys Rev Lett. 2001 Jan 15;86(3):436-9 - PubMed
  3. Phys Rev Lett. 2005 Nov 4;95(19):195001 - PubMed
  4. Rev Sci Instrum. 2016 Jul;87(7):071101 - PubMed
  5. Med Phys. 2004 Jun;31(6):1587-92 - PubMed
  6. Nat Commun. 2012 Jun 06;3:874 - PubMed
  7. Phys Rev Lett. 2011 Jun 17;106(24):245301 - PubMed
  8. Phys Rev Lett. 2000 Oct 2;85(14):2945-8 - PubMed
  9. Phys Rev Lett. 2010 Jul 2;105(1):015005 - PubMed
  10. Rev Sci Instrum. 2012 Feb;83(2):025102 - PubMed
  11. Phys Rev Lett. 2017 May 12;118(19):194801 - PubMed
  12. Phys Rev Lett. 2004 Mar 5;92(9):095001 - PubMed
  13. Rev Sci Instrum. 2016 Nov;87(11):11E328 - PubMed
  14. Phys Rev Lett. 2006 Jun 23;96(24):245002 - PubMed

Publication Types