Display options
Share it on

Front Cell Neurosci. 2017 Aug 15;11:238. doi: 10.3389/fncel.2017.00238. eCollection 2017.

Long-Lasting Enhancement of Visual Perception with Repetitive Noninvasive Transcranial Direct Current Stimulation.

Frontiers in cellular neuroscience

Janina R Behrens, Antje Kraft, Kerstin Irlbacher, Holger Gerhardt, Manuel C Olma, Stephan A Brandt

Affiliations

  1. Charité Universitätsmedizin BerlinBerlin, Germany.
  2. NeuroCare Clinical Research Center, Charité Universitätsmedizin BerlinBerlin, Germany.
  3. Department of Psychiatry, Psychiatric University Hospital St. Hedwig, Charité Universitätsmedizin BerlinBerlin, Germany.
  4. Medical care center, MVZ Reinickendorf BerlinBerlin, Germany.
  5. Center for Economics and Neuroscience, Rheinische Friedrich-Wilhelms-Universität BonnBonn, Germany.

PMID: 28860969 PMCID: PMC5559806 DOI: 10.3389/fncel.2017.00238

Abstract

Understanding processes performed by an intact visual cortex as the basis for developing methods that enhance or restore visual perception is of great interest to both researchers and medical practitioners. Here, we explore whether contrast sensitivity, a main function of the primary visual cortex (V1), can be improved in healthy subjects by repetitive, noninvasive anodal transcranial direct current stimulation (tDCS). Contrast perception was measured via threshold perimetry directly before and after intervention (tDCS or sham stimulation) on each day over 5 consecutive days (24 subjects, double-blind study). tDCS improved contrast sensitivity from the second day onwards, with significant effects lasting 24 h. After the last stimulation on day 5, the anodal group showed a significantly greater improvement in contrast perception than the sham group (23 vs. 5%). We found significant long-term effects in only the central 2-4° of the visual field 4 weeks after the last stimulation. We suspect a combination of two factors contributes to these lasting effects. First, the V1 area that represents the central retina was located closer to the polarization electrode, resulting in higher current density. Second, the central visual field is represented by a larger cortical area relative to the peripheral visual field (cortical magnification). This is the first study showing that tDCS over V1 enhances contrast perception in healthy subjects for several weeks. This study contributes to the investigation of the causal relationship between the external modulation of neuronal membrane potential and behavior (in our case, visual perception). Because the vast majority of human studies only show temporary effects after single tDCS sessions targeting the visual system, our study underpins the potential for lasting effects of repetitive tDCS-induced modulation of neuronal excitability.

Keywords: contrast sensitivity; noninvasive brain stimulation; plasticity; primary visual cortex; transcranial direct current stimulation; visual perceptual learning

References

  1. Neurorehabil Neural Repair. 2012 Jul-Aug;26(6):616-26 - PubMed
  2. Front Hum Neurosci. 2013 Jun 24;7:314 - PubMed
  3. Eur J Ophthalmol. 2005 Mar-Apr;15(2):209-12 - PubMed
  4. Curr Biol. 2004 Apr 6;14(7):573-8 - PubMed
  5. PM R. 2011 Sep;3(9):825-35 - PubMed
  6. Eur J Neurosci. 2005 Feb;21(4):1107-15 - PubMed
  7. Med Sci (Paris). 2011 Apr;27(4):413-20 - PubMed
  8. Brain Res Bull. 2007 May 30;72(4-6):208-14 - PubMed
  9. Graefes Arch Clin Exp Ophthalmol. 2009 Jan;247(1):43-51 - PubMed
  10. Exp Neurol. 1962 Jun;5:436-52 - PubMed
  11. Klin Monbl Augenheilkd. 1984 May;184(5):374-6 - PubMed
  12. Prog Brain Res. 2005;149:65-81 - PubMed
  13. Sleep. 2009 Dec;32(12):1559-65 - PubMed
  14. Neurology. 2001 Nov 27;57(10):1899-901 - PubMed
  15. Vis Neurosci. 2008 Jan-Feb;25(1):77-81 - PubMed
  16. J Physiol. 1985 Aug;365:331-63 - PubMed
  17. Optom Vis Sci. 2005 Aug;82(8):755-64 - PubMed
  18. Neuron. 2010 Apr 29;66(2):198-204 - PubMed
  19. Brain. 2006 Jul;129(Pt 7):1659-73 - PubMed
  20. Nature. 1962 Nov 10;196:584-5 - PubMed
  21. Neuroreport. 2004 Jun 7;15(8):1307-10 - PubMed
  22. Acta Ophthalmol Scand. 1997 Aug;75(4):368-75 - PubMed
  23. Neuropsychologia. 2013 Jun;51(7):1234-9 - PubMed
  24. J Neurophysiol. 2012 Apr;107(7):1868-80 - PubMed
  25. J Korean Med Sci. 2010 Oct;25(10):1499-505 - PubMed
  26. Brain Stimul. 2011 Jul;4(3):169-74 - PubMed
  27. Restor Neurol Neurosci. 2011;29(6):365-74 - PubMed
  28. Neuroreport. 2001 Nov 16;12(16):3553-5 - PubMed
  29. Atten Percept Psychophys. 2015 Aug;77(6):1813-40 - PubMed
  30. PLoS One. 2009 Aug 19;4(8):e6683 - PubMed
  31. J Vis. 2006 Oct 23;6(11):1224-43 - PubMed
  32. J Vis. 2003;3(10):586-98 - PubMed
  33. J Neurosci. 2010 Dec 1;30(48):16304-13 - PubMed
  34. Lancet. 2014 Jan 18;383(9913):245-54 - PubMed
  35. Brain Stimul. 2013 Nov;6(6):860-7 - PubMed
  36. Suppl Clin Neurophysiol. 2003;56:249-54 - PubMed
  37. Neuron. 2004 Sep 30;44(1):121-33 - PubMed
  38. Exp Brain Res. 2010 Dec;207(3-4):283-90 - PubMed
  39. Brain Stimul. 2008 Jul;1(3):206-23 - PubMed
  40. Hum Neurobiol. 1985;4(2):97-9 - PubMed
  41. PLoS One. 2016 Dec 9;11(12 ):e0167697 - PubMed
  42. J Cogn Neurosci. 2005 Oct;17(10):1553-64 - PubMed
  43. J Neurosci. 1987 Mar;7(3):913-22 - PubMed
  44. J Vis. 2010 Nov 24;10(13):13 - PubMed
  45. Comput Med Imaging Graph. 2014 Dec;38(8):675-82 - PubMed
  46. Neuron. 2006 Aug 3;51(3):339-49 - PubMed
  47. Front Psychiatry. 2012 Sep 03;3:80 - PubMed
  48. Dose Response. 2017 Feb 09;15(1):1559325816685467 - PubMed
  49. Neuroscience. 2011 Jan 13;172:219-25 - PubMed
  50. Neuron. 2008 Mar 27;57(6):827-33 - PubMed
  51. J Neurosurg. 1974 Jun;40(6):747-55 - PubMed
  52. Invest Ophthalmol Vis Sci. 2007 Dec;48(12):5782-7 - PubMed
  53. J Vis. 2004 Oct 26;4(10):879-90 - PubMed
  54. J Neurosci. 2009 Oct 14;29(41):12748-56 - PubMed
  55. Perception. 2014;43(11):1145-76 - PubMed
  56. Acta Orthop Traumatol Turc. 2016 Dec;50(6):606-609 - PubMed
  57. Arch Ophthalmol. 1991 Jun;109(6):816-24 - PubMed
  58. Vision Res. 2002 May;42(10):1249-58 - PubMed
  59. Clin Neurophysiol. 2006 Apr;117(4):845-50 - PubMed

Publication Types