Display options
Share it on

Front Psychol. 2017 Aug 17;8:1396. doi: 10.3389/fpsyg.2017.01396. eCollection 2017.

Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas.

Frontiers in psychology

Fabien Cignetti, Pierre-Yves Chabeauti, Jasmine Menant, Jean-Luc J J Anton, Christina Schmitz, Marianne Vaugoyeau, Christine Assaiante

Affiliations

  1. Aix-Marseille Université, CNRS, LNC, Laboratoire de Neurosciences CognitivesMarseille, France.
  2. Aix-Marseille Université, CNRS, Fédération 3CMarseille, France.
  3. Prince of Wales Medical Research Institute, School of Public Health and Community Medicine, University of New South Wales, RandwickNSW, Australia.
  4. Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM FonctionnelleMarseille, France.
  5. Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CRNL, INSERM U1028, CNRS UMR 5292Lyon, France.
  6. University Lyon 1Lyon, France.

PMID: 28861024 PMCID: PMC5562714 DOI: 10.3389/fpsyg.2017.01396

Abstract

The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

Keywords: biological motion; form-from-motion perception; functional MRI; gravity; motor resonance

References

  1. J Exp Psychol Hum Percept Perform. 2005 Dec;31(6):1247-1265 - PubMed
  2. Vision Res. 1992 Dec;32(12):2313-29 - PubMed
  3. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20582-7 - PubMed
  4. Cereb Cortex. 1997 Oct-Nov;7(7):690-701 - PubMed
  5. Nat Rev Neurosci. 2006 Dec;7(12):942-51 - PubMed
  6. Cereb Cortex. 2004 Feb;14(2):181-8 - PubMed
  7. Soc Cogn Affect Neurosci. 2012 Apr;7(4):413-22 - PubMed
  8. J Neurosci. 2012 Feb 8;32(6):1969-73 - PubMed
  9. Neuroimage. 1995 Mar;2(1):45-53 - PubMed
  10. J Cogn Neurosci. 2008 Feb;20(2):324-41 - PubMed
  11. Eur J Neurosci. 2005 May;21(10):2864-75 - PubMed
  12. Neuroimage. 2001 May;13(5):903-19 - PubMed
  13. Vision Res. 2001;41(10-11):1475-82 - PubMed
  14. Perception. 1992;21(1):69-76 - PubMed
  15. Neuroimage. 2014 May 1;91:412-9 - PubMed
  16. J Neurosci. 2007 Nov 28;27(48):13241-50 - PubMed
  17. Cereb Cortex. 2005 Nov;15(11):1761-7 - PubMed
  18. Curr Opin Neurobiol. 2009 Dec;19(6):666-71 - PubMed
  19. Psychol Sci. 2003 Jul;14(4):302-8 - PubMed
  20. Curr Biol. 2008 Oct 28;18(20):1576-80 - PubMed
  21. Neuroimage. 2007 May 1;35(4):1674-84 - PubMed
  22. Cognition. 2001 Dec;82(2):B51-61 - PubMed
  23. Science. 2005 Apr 15;308(5720):416-9 - PubMed
  24. Vision Res. 2006 Feb;46(3):382-91 - PubMed
  25. J Neurosci. 2009 Jun 3;29(22):7315-29 - PubMed
  26. Neuroimage. 2013 May 1;71:114-24 - PubMed
  27. Science. 1982 Oct 29;218(4571):486-7 - PubMed
  28. Neuroreport. 2000 Jan 17;11(1):109-15 - PubMed
  29. J Neurophysiol. 2007 Sep;98(3):1415-27 - PubMed
  30. Neuroimage. 2001 Nov;14(5):1193-205 - PubMed
  31. Cereb Cortex. 1997 Apr-May;7(3):283-92 - PubMed
  32. Psychol Sci. 2003 Jul;14(4):377-80 - PubMed
  33. J Exp Psychol Hum Percept Perform. 2004 Jun;30(3):431-44 - PubMed
  34. Perception. 1984;13(3):283-6 - PubMed
  35. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11656-61 - PubMed
  36. Curr Biol. 2004 Jan 20;14(2):117-20 - PubMed
  37. Cereb Cortex. 2010 Jul;20(7):1647-55 - PubMed
  38. Eur J Neurosci. 2010 Jan;31(2):386-98 - PubMed
  39. Curr Opin Neurobiol. 2005 Apr;15(2):213-8 - PubMed
  40. J Vis. 2003;3(4):252-64 - PubMed
  41. Neurosci Biobehav Rev. 2012 Jan;36(1):341-9 - PubMed
  42. J Neurosci. 2009 Aug 12;29(32):10153-9 - PubMed
  43. Annu Rev Neurosci. 2004;27:169-92 - PubMed
  44. J Neurosci. 2004 Jul 7;24(27):6181-8 - PubMed
  45. Neuroimage. 2005 Jul 1;26(3):839-51 - PubMed
  46. Front Integr Neurosci. 2013 Dec 26;7:101 - PubMed
  47. J Vis. 2011 Apr 08;11(4):null - PubMed
  48. PLoS One. 2011 Jan 10;6(1):e15749 - PubMed
  49. Neuroimage. 2001 May;13(5):775-85 - PubMed
  50. Neuroreport. 2007 Apr 16;18(6):619-23 - PubMed
  51. Neuroimage. 2015 Jan 1;104:221-30 - PubMed
  52. Nat Neurosci. 2001 Jul;4(7):693-4 - PubMed
  53. Curr Biol. 2006 Apr 18;16(8):821-4 - PubMed
  54. Percept Psychophys. 2000 Jul;62(5):889-99 - PubMed
  55. Cereb Cortex. 2002 Jul;12(7):772-82 - PubMed

Publication Types