Display options
Share it on

Front Neurol. 2017 Aug 16;8:386. doi: 10.3389/fneur.2017.00386. eCollection 2017.

Coding of Velocity Storage in the Vestibular Nuclei.

Frontiers in neurology

Sergei B Yakushin, Theodore Raphan, Bernard Cohen

Affiliations

  1. Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
  2. Department of Computer and Information Science, Brooklyn College (CUNY), Brooklyn, NY, United States.

PMID: 28861030 PMCID: PMC5561016 DOI: 10.3389/fneur.2017.00386

Abstract

Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.

Keywords: adaptation; gravity; monkey; optokinetic after-nystagmus; spatial orientation; velocity storage; vestibular-only neurons; vestibule–ocular reflex

References

  1. Ann N Y Acad Sci. 1996 Jun 19;781:348-63 - PubMed
  2. J Physiol. 2014 Jan 1;592(1):171-88 - PubMed
  3. J Neurophysiol. 2008 Sep;100(3):1686-90 - PubMed
  4. Exp Brain Res. 1991;87(3):505-20 - PubMed
  5. J Neurophysiol. 2008 Dec;100(6):2981-96 - PubMed
  6. Aviat Space Environ Med. 2002 May;73(5):436-44 - PubMed
  7. Exp Brain Res. 1995;106(1):123-34 - PubMed
  8. J Neurophysiol. 2002 Dec;88(6):3518-33 - PubMed
  9. Exp Brain Res. 1992;90(3):526-38 - PubMed
  10. Ann N Y Acad Sci. 1999 May 28;871:123-35 - PubMed
  11. Exp Brain Res. 1978 Oct 13;33(2):203-11 - PubMed
  12. Biol Cybern. 1989;61(2):79-88 - PubMed
  13. J Neurophysiol. 1991 Oct;66(4):1410-21 - PubMed
  14. J Neurophysiol. 1991 Oct;66(4):1422-39 - PubMed
  15. Ann N Y Acad Sci. 1999 May 28;871:94-122 - PubMed
  16. Exp Brain Res. 2009 Jun;195(4):553-67 - PubMed
  17. Exp Brain Res. 2010 Jul;204(2):207-22 - PubMed
  18. J Neurophysiol. 2006 Jan;95(1):464-78 - PubMed
  19. Neuroscience. 1999;93(1):171-81 - PubMed
  20. J Neurophysiol. 2009 Sep;102(3):1388-97 - PubMed
  21. Exp Brain Res. 1992;92(1):123-38 - PubMed
  22. J Appl Physiol (1985). 1992 Aug;73(2 Suppl):121S-131S - PubMed
  23. Exp Brain Res. 1992;92(2):209-26 - PubMed
  24. Ann N Y Acad Sci. 1992 May 22;656:140-57 - PubMed
  25. Ann N Y Acad Sci. 2001 Oct;942:345-63 - PubMed
  26. Exp Brain Res. 2000 Apr;131(4):433-47 - PubMed
  27. J Neurophysiol. 1999 May;81(5):2175-90 - PubMed
  28. Exp Brain Res. 2001 Jun;138(4):410-8 - PubMed
  29. J Neurophysiol. 1992 Jul;68(1):244-64 - PubMed
  30. Exp Brain Res. 2004 Mar;155(1):91-101 - PubMed
  31. J Neurophysiol. 2012 Jul;108(2):390-405 - PubMed
  32. Exp Brain Res. 1988;70(1):1-14 - PubMed
  33. J Neurosci. 1999 Jan 1;19(1):316-27 - PubMed
  34. J Neurophysiol. 2005 Dec;94(6):3860-71 - PubMed
  35. Exp Brain Res. 1994;102(1):57-68 - PubMed
  36. Brain Res. 1975 Dec 12;100(1):182-7 - PubMed
  37. Aviat Space Environ Med. 1985 Jun;56(6):601-6 - PubMed
  38. Am J Otolaryngol. 1982 Jul-Aug;3(4):235-41 - PubMed
  39. Exp Brain Res. 2009 May;195(1):45-57 - PubMed
  40. Exp Brain Res. 1977 Apr 21;27(5):523-38 - PubMed
  41. Ann N Y Acad Sci. 2009 May;1164:367-71 - PubMed
  42. Ann N Y Acad Sci. 2011 Sep;1233:214-8 - PubMed
  43. J Neurophysiol. 1984 Feb;51(2):210-41 - PubMed
  44. J Neurophysiol. 1995 Dec;74(6):2722-38 - PubMed
  45. J Neurophysiol. 2013 May;109(10):2571-84 - PubMed
  46. Exp Brain Res. 2000 Dec;135(4):511-26 - PubMed
  47. Exp Brain Res. 2000 Jun;132(4):539-49 - PubMed
  48. Prog Brain Res. 2008;171:543-53 - PubMed
  49. Science. 1985 Apr 12;228(4696):199-202 - PubMed
  50. J Comp Neurol. 1972 May;145(1):1-23 - PubMed
  51. J Gravit Physiol. 2007 Jul;14(1):P69-70 - PubMed
  52. Exp Brain Res. 2002 Jul;145(1):1-27 - PubMed
  53. Ann N Y Acad Sci. 1992 May 22;656:966-8 - PubMed
  54. Front Neurol. 2017 May 05;8:175 - PubMed
  55. Ann N Y Acad Sci. 1981;374:421-33 - PubMed
  56. J Physiol. 2015 Jan 1;593(1):321-30 - PubMed
  57. Exp Brain Res. 1977 Nov 24;30(2-3):447-50 - PubMed
  58. Ann N Y Acad Sci. 1996 Jun 19;781:364-84 - PubMed
  59. J Neurophysiol. 1999 Jul;82(1):416-28 - PubMed
  60. Ann N Y Acad Sci. 1992 May 22;656:829-31 - PubMed
  61. Brain Res. 1992 May 22;581(1):175-80 - PubMed
  62. Ann N Y Acad Sci. 1992 May 22;656:933-6 - PubMed
  63. Exp Brain Res. 2011 May;210(3-4):503-13 - PubMed
  64. J Physiol. 1987 Dec;393:703-25 - PubMed
  65. Ann N Y Acad Sci. 1999 May 28;871:148-61 - PubMed
  66. J Physiol. 1977 Sep;270(2):321-44 - PubMed
  67. Acta Otolaryngol. 1984 Nov-Dec;98(5-6):462-71 - PubMed
  68. Exp Brain Res. 2010 Jan;200(3-4):197-222 - PubMed
  69. Exp Brain Res. 2011 May;210(3-4):407-22 - PubMed
  70. Exp Neurol. 1975 Jan;46(1):187-98 - PubMed
  71. Curr Opin Neurobiol. 2010 Jun;20(3):353-60 - PubMed
  72. J Neurophysiol. 1998 May;79(5):2653-67 - PubMed
  73. Exp Brain Res. 2001 Apr;137(3-4):323-35 - PubMed
  74. Front Neurol. 2014 Jul 15;5:124 - PubMed
  75. J Neurophysiol. 1998 Dec;80(6):3077-99 - PubMed
  76. J Neurophysiol. 1997 Aug;78(2):1193-7 - PubMed
  77. Ann N Y Acad Sci. 1999 May 28;871:458-62 - PubMed
  78. Exp Brain Res. 1977 Nov 24;30(2-3):323-30 - PubMed
  79. Exp Brain Res. 1985;57(2):362-9 - PubMed
  80. J Neurophysiol. 1971 Jul;34(4):635-60 - PubMed
  81. Exp Brain Res. 1994;99(2):347-60 - PubMed
  82. Exp Brain Res. 2000 Apr;131(4):416-32 - PubMed
  83. Exp Brain Res. 1979 Apr 2;35(2):229-48 - PubMed
  84. Vision Res. 1980;20(6):535-8 - PubMed
  85. J Neurosci. 2001 Mar 15;21(6):2131-42 - PubMed
  86. IEEE Trans Biomed Eng. 1963 Oct;10:137-45 - PubMed
  87. Acta Otolaryngol. 1985 Jan-Feb;99(1-2):95-101 - PubMed
  88. J Neurophysiol. 1975 Sep;38(5):1140-61 - PubMed
  89. J Neurophysiol. 2007 Feb;97(2):1114-26 - PubMed
  90. Prog Brain Res. 2008;171:313-8 - PubMed

Publication Types

Grant support