Display options
Share it on

Front Mol Neurosci. 2017 Aug 25;10:270. doi: 10.3389/fnmol.2017.00270. eCollection 2017.

Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction.

Frontiers in molecular neuroscience

Erica Hurtado, Víctor Cilleros, Laia Just, Anna Simó, Laura Nadal, Marta Tomàs, Neus Garcia, Maria A Lanuza, Josep Tomàs

Affiliations

  1. Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain.

PMID: 28890686 PMCID: PMC5574929 DOI: 10.3389/fnmol.2017.00270

Abstract

Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

Keywords: PDK1; PKC; cPKCβI; muscle contraction; neuromuscular junction; phosphorylation

References

  1. J Comp Neurol. 2010 Jan 10;518(2):211-28 - PubMed
  2. Oncogene. 2004 Dec 16;23 (58):9348-58 - PubMed
  3. J Cell Biol. 2007 Mar 26;176(7):1035-47 - PubMed
  4. Curr Biol. 1998 Sep 24;8(19):1069-77 - PubMed
  5. Cancer Res. 2007 Oct 15;67(20):9986-95 - PubMed
  6. Nat Cell Biol. 2008 Feb;10 (2):127-37 - PubMed
  7. Neuropathology. 2009 Jun;29(3):211-8 - PubMed
  8. Biochem J. 1999 Sep 1;342 ( Pt 2):287-92 - PubMed
  9. Acta Physiol Pharmacol Ther Latinoam. 1999;49(4):257-67 - PubMed
  10. J Cell Biol. 2003 Jun 9;161(5):899-909 - PubMed
  11. Cell Signal. 2011 May;23(5):753-62 - PubMed
  12. Neurochem Res. 2016 Mar;41(3):534-43 - PubMed
  13. Mol Brain. 2015 Dec 01;8(1):80 - PubMed
  14. J Cell Biol. 2011 Sep 19;194(6):921-35 - PubMed
  15. Nat Struct Biol. 2002 Dec;9(12 ):940-4 - PubMed
  16. Semin Cell Dev Biol. 2004 Apr;15(2):161-70 - PubMed
  17. BMC Neurosci. 2001;2:17 - PubMed
  18. J Cell Sci. 1995 Jan;108 ( Pt 1):51-61 - PubMed
  19. J Biol Chem. 1982 Nov 25;257(22):13193-6 - PubMed
  20. Biochem J. 2003 Mar 1;370(Pt 2):361-71 - PubMed
  21. Exp Neurol. 2010 Sep;225(1):183-95 - PubMed
  22. J Comp Neurol. 2011 Apr 1;519(5):849-55 - PubMed
  23. Science. 1998 Sep 25;281(5385):2042-5 - PubMed
  24. Mol Cell. 2002 Jun;9(6):1227-40 - PubMed
  25. EMBO J. 2000 Feb 15;19(4):496-503 - PubMed
  26. Nat Rev Mol Cell Biol. 2010 Jan;11(1):9-22 - PubMed
  27. Mol Cell Biol. 2005 Mar;25(6):2347-63 - PubMed
  28. J Neurosci Res. 2007 Mar;85(4):748-56 - PubMed
  29. BMC Cancer. 2006 Mar 21;6:77 - PubMed
  30. Mol Cell Biol. 1998 Feb;18(2):839-45 - PubMed
  31. Curr Biol. 1997 Oct 1;7(10 ):776-89 - PubMed
  32. Methods Mol Biol. 2003;233:171-89 - PubMed
  33. J Biol Chem. 2000 Apr 7;275(14):10697-701 - PubMed
  34. J Neurosci. 2004 Apr 14;24(15):3762-9 - PubMed
  35. Curr Biol. 1998 Dec 17-31;8(25):1366-75 - PubMed
  36. Neurosci Lett. 2013 Nov 27;556:166-9 - PubMed
  37. Mol Brain. 2015 Feb 10;8:8 - PubMed
  38. J Biol Chem. 1994 Jul 29;269(30):19578-84 - PubMed
  39. J Neurosci Res. 2000 Sep 15;61(6):616-25 - PubMed
  40. Pflugers Arch. 2014 Dec;466(12):2215-28 - PubMed
  41. Front Mol Neurosci. 2017 May 18;10 :147 - PubMed
  42. Cell. 1998 Oct 30;95(3):307-18 - PubMed
  43. J Anat. 2014 Jan;224(1):61-73 - PubMed
  44. J Biol Chem. 1996 Aug 30;271(35):20973-6 - PubMed
  45. Am J Physiol Lung Cell Mol Physiol. 2000 Sep;279(3):L429-38 - PubMed
  46. Nat Rev Cancer. 2007 Apr;7(4):281-94 - PubMed
  47. J Neurosci Res. 2014 May;92(5):543-54 - PubMed
  48. Curr Biol. 1995 Dec 1;5(12 ):1394-1403 - PubMed
  49. J Biol Chem. 1993 Aug 15;268(23):17559-63 - PubMed
  50. Circ Res. 2004 May 14;94(9):1219-26 - PubMed
  51. Biochim Biophys Acta. 2006 Aug;1761(8):827-37 - PubMed
  52. FEBS Lett. 2000 Nov 10;484(3):217-23 - PubMed
  53. PLoS One. 2012;7(2):e31515 - PubMed
  54. J Biol Chem. 2004 Feb 13;279(7):5788-801 - PubMed
  55. J Biol Chem. 2003 Feb 14;278(7):5388-98 - PubMed
  56. Curr Top Microbiol Immunol. 2010;346:9-29 - PubMed
  57. Circulation. 2008 Nov 18;118(21):2174-82 - PubMed
  58. J Neurosci Res. 2006 Jun;83(8):1407-14 - PubMed
  59. Mol Biol Cell. 2011 Apr 15;22(8):1409-19 - PubMed

Publication Types