Display options
Share it on

Front Cell Neurosci. 2017 Sep 20;11:289. doi: 10.3389/fncel.2017.00289. eCollection 2017.

Uncorrelated Neural Firing in Mouse Visual Cortex during Spontaneous Retinal Waves.

Frontiers in cellular neuroscience

Matthew T Colonnese, Jing Shen, Yasunobu Murata

Affiliations

  1. Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States.

PMID: 28979189 PMCID: PMC5611364 DOI: 10.3389/fncel.2017.00289

Abstract

Synchronous firing among the elements of forming circuits is critical for stabilization of synapses. Understanding the nature of these local network interactions during development can inform models of circuit formation. Within cortex, spontaneous activity changes throughout development. Unlike the adult, early spontaneous activity occurs in discontinuous population bursts separated by long silent periods, suggesting a high degree of local synchrony. However, whether the micro-patterning of activity within early bursts is unique to this early age and specifically tuned for early development is poorly understood, particularly within the column. To study this we used single-shank multi-electrode array recordings of spontaneous activity in the visual cortex of non-anesthetized neonatal mice to quantify single-unit firing rates, and applied multiple measures of network interaction and synchrony throughout the period of map formation and immediately after eye-opening. We find that despite co-modulation of firing rates on a slow time scale (hundreds of ms), the number of coactive neurons, as well as pair-wise neural spike-rate correlations, are both lower before eye-opening. In fact, on post-natal days (P)6-9 correlated activity was lower than expected by chance, suggesting active decorrelation of activity during early bursts. Neurons in lateral geniculate nucleus developed in an opposite manner, becoming less correlated after eye-opening. Population coupling, a measure of integration in the local network, revealed a population of neurons with particularly strong local coupling present at P6-11, but also an adult-like diversity of coupling at all ages, suggesting that a neuron's identity as locally or distally coupled is determined early. The occurrence probabilities of unique neuronal "words" were largely similar at all ages suggesting that retinal waves drive adult-like patterns of co-activation. These findings suggest that the bursts of spontaneous activity during early visual development do not drive hyper-synchronous activity within columns. Rather, retinal waves provide windows of potential activation during which neurons are active but poorly correlated, adult-like patterns of correlation are achieved soon after eye-opening.

Keywords: development; oscillation; retinal wave; spindle-burst; spontaneous activity; synchronization; visual cortex

References

  1. Neuron. 2000 Dec;28(3):955-66 - PubMed
  2. Nature. 2004 Sep 30;431(7008):573-8 - PubMed
  3. Neuron. 2007 Oct 25;56(2):327-38 - PubMed
  4. Cereb Cortex. 2017 Feb 1;27(2):1386-1400 - PubMed
  5. Nat Neurosci. 2005 Aug;8(8):988-90 - PubMed
  6. J Neurosci. 2006 Jun 21;26(25):6728-36 - PubMed
  7. Curr Biol. 2011 Sep 27;21(18):1552-8 - PubMed
  8. Nature. 2012 May 02;486(7401):113-7 - PubMed
  9. Front Cell Neurosci. 2010 Jul 14;4:null - PubMed
  10. J Neurosci. 1998 Dec 1;18(23):9870-95 - PubMed
  11. J Neurosci. 1990 Apr;10(4):1134-53 - PubMed
  12. Nat Rev Neurosci. 2010 Jan;11(1):18-29 - PubMed
  13. Neuron. 2002 Sep 12;35(6):1123-34 - PubMed
  14. Neuroscience. 2007 Mar 30;145(3):997-1006 - PubMed
  15. Annu Rev Neurosci. 2010;33:23-48 - PubMed
  16. J Neurosci. 2011 Jun 15;31(24):8699-705 - PubMed
  17. Front Neural Circuits. 2016 May 24;10:40 - PubMed
  18. Science. 2011 Oct 14;334(6053):226-9 - PubMed
  19. PLoS One. 2013 Nov 11;8(11):e79028 - PubMed
  20. Neuron. 2011 Jul 28;71(2):332-47 - PubMed
  21. Nat Neurosci. 2007 Mar;10(3):370-5 - PubMed
  22. Curr Opin Neurobiol. 2011 Feb;21(1):160-8 - PubMed
  23. Annu Rev Neurosci. 2008;31:479-509 - PubMed
  24. Neuron. 2004 Jul 22;43(2):237-49 - PubMed
  25. Science. 1996 Nov 15;274(5290):1133-8 - PubMed
  26. Eur J Neurosci. 2012 Jun;35(12):1846-56 - PubMed
  27. Neuron. 2013 Oct 16;80(2):335-42 - PubMed
  28. J Neurosci. 2008 Nov 26;28(48):12851-63 - PubMed
  29. Neuron. 2010 Aug 12;67(3):480-98 - PubMed
  30. J Neurosci. 2009 Sep 2;29(35):10890-9 - PubMed
  31. J Neurophysiol. 2006 Nov;96(5):2775-84 - PubMed
  32. Neuron. 2013 Feb 6;77(3):388-405 - PubMed
  33. Science. 2009 Dec 4;326(5958):1419-24 - PubMed
  34. Neuron. 2015 Jul 15;87(2):399-410 - PubMed
  35. Neuron. 2016 Feb 3;89(3):536-49 - PubMed
  36. Science. 2011 Jan 7;331(6013):83-7 - PubMed
  37. Curr Opin Neurobiol. 2002 Feb;12(1):104-9 - PubMed
  38. J Neurosci. 2016 Nov 30;36(48):12259-12275 - PubMed
  39. Nature. 2015 May 28;521(7553):511-515 - PubMed
  40. Nat Neurosci. 2007 Apr;10(4):453-61 - PubMed
  41. PLoS Comput Biol. 2014 Jan;10(1):e1003428 - PubMed
  42. J Neurosci. 2010 Mar 24;30(12):4325-37 - PubMed
  43. J Neurosci. 2014 Apr 16;34(16):5477-85 - PubMed
  44. Physiol Rev. 2005 Jul;85(3):883-941 - PubMed
  45. Nature. 2013 Apr 4;496(7443):96-100 - PubMed
  46. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15049-54 - PubMed
  47. Neuron. 2013 Dec 4;80(5):1129-44 - PubMed
  48. Science. 2010 Jan 29;327(5965):587-90 - PubMed
  49. Curr Opin Neurobiol. 2014 Feb;24(1):166-75 - PubMed
  50. Neuron. 2016 Feb 3;89(3):521-35 - PubMed
  51. Neuron. 2011 Aug 11;71(3):425-32 - PubMed
  52. Front Synaptic Neurosci. 2010 Jul 19;2:30 - PubMed
  53. Nat Neurosci. 2016 Apr;19(4):634-641 - PubMed
  54. Front Neural Circuits. 2016 Jan 21;10 :1 - PubMed
  55. Curr Biol. 2012 Feb 7;22(3):253-8 - PubMed
  56. Science. 1999 Jul 23;285(5427):599-604 - PubMed
  57. Elife. 2016 Oct 11;5:null - PubMed
  58. Nat Neurosci. 2016 Aug 26;19(9):1165-74 - PubMed
  59. Nat Neurosci. 2015 Feb;18(2):252-61 - PubMed
  60. J Physiol. 1989 Sep;416:303-25 - PubMed
  61. J Neurocytol. 1983 Aug;12(4):697-712 - PubMed
  62. Cereb Cortex. 2013 Jun;23(6):1299-316 - PubMed
  63. J Neurophysiol. 1991 Feb;65(2):247-63 - PubMed
  64. J Comp Neurol. 2006 Feb 10;494(5):738-51 - PubMed
  65. Nature. 2006 Jan 5;439(7072):79-83 - PubMed
  66. J Neurosci. 2015 Feb 25;35(8):3370-83 - PubMed
  67. Nat Rev Neurosci. 2002 Jan;3(1):34-42 - PubMed
  68. Nature. 2012 Oct 11;490(7419):219-25 - PubMed
  69. Science. 1980 Oct 10;210(4466):153-7 - PubMed
  70. Nat Neurosci. 2001 Nov;4 Suppl:1207-14 - PubMed
  71. J Neurosci. 2012 Nov 28;32(48):17108-19 - PubMed
  72. Behav Brain Sci. 1997 Dec;20(4):537-56; discussion 556-96 - PubMed
  73. J Neurosci. 2009 Jul 15;29(28):9011-25 - PubMed

Publication Types

Grant support