Display options
Share it on

Ann Transl Med. 2017 Aug;5(16):324. doi: 10.21037/atm.2017.06.17.

The role of reactive oxygen species in myocardial redox signaling and regulation.

Annals of translational medicine

Demetrios Moris, Michael Spartalis, Eleni Tzatzaki, Eleftherios Spartalis, Georgia-Sofia Karachaliou, Andreas S Triantafyllis, Georgios I Karaolanis, Diamantis I Tsilimigras, Stamatios Theocharis

Affiliations

  1. Department of Surgery, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
  2. Division of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece.
  3. Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece.
  4. Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium.
  5. Department of Vascular Surgery, University of Athens, Medical School, Athens, Greece.
  6. Department of Pathology, Medical School, University of Athens, Athens, Greece.

PMID: 28861421 PMCID: PMC5566737 DOI: 10.21037/atm.2017.06.17

Abstract

Reactive oxygen species (ROS) are subcellular messengers in gene regulatory and signal transduction pathways. In pathological situations, ROS accumulate due to excessive production or insufficient degradation, leading to oxidative stress (OS). OS causes oxidation of DNA, membranes, cellular lipids, and proteins, impairing their normal function and leading ultimately to cell death. OS in the heart is increased in response to ischemia/reperfusion, hypertrophy, and heart failure. The concentration of ROS is determined by their rates of production and clearance by antioxidants. Increases in OS in heart failure are primarily a result of the functional uncoupling of the respiratory chain due to inactivation of complex I. However, increased ROS in the failing myocardium may also be caused by impaired antioxidant capacity, such as decreased activity of Cu/Zn superoxide dismutase (SOD) and catalase (CAT) or stimulation of enzymatic sources, including, cyclooxygenase, xanthine oxidase (XO), nitric oxide synthase, and nonphagocytic NAD(P)H oxidases (Noxs). Mitochondria are the main source of ROS during heart failure and aging. Increased production of ROS in the failing heart leads to mitochondrial permeability transition, which results in matrix swelling, outer membrane rupture, a release of apoptotic signaling molecules, and irreversible injury to the mitochondria. Alterations of "redox homeostasis" leads to major cellular consequences, and cellular survival requires an optimal regulation of the redox balance.

Keywords: Reactive oxygen species (ROS); myocardial; redox; signaling

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

  1. Cardiovasc Res. 2006 Jul 15;71(2):310-21 - PubMed
  2. Mol Cell Biochem. 2010 Jan;333(1-2):191-201 - PubMed
  3. Diabetes. 2009 Oct;58(10):2386-95 - PubMed
  4. J Biol Chem. 2002 Mar 22;277(12):10244-50 - PubMed
  5. Circulation. 2003 Oct 21;108(16):1912-6 - PubMed
  6. Biochim Biophys Acta. 1998 Jul 23;1381(2):191-202 - PubMed
  7. Circ Res. 2000 Feb 4;86(2):119-20 - PubMed
  8. J Am Coll Cardiol. 2003 Jun 18;41(12):2164-71 - PubMed
  9. J Cell Mol Med. 2011 Dec;15(12):2601-13 - PubMed
  10. J Pharmacol Exp Ther. 2008 Sep;326(3):732-8 - PubMed
  11. Circulation. 2002 Jan 22;105(3):293-6 - PubMed
  12. Circ Res. 2003 Aug 22;93(4):292-301 - PubMed
  13. J Biol Chem. 2001 Feb 16;276(7):5197-203 - PubMed
  14. Circ Res. 2009 Dec 4;105(12 ):1204-12 - PubMed
  15. Cardiovasc Res. 2007 Jul 15;75(2):315-26 - PubMed
  16. Philos Trans R Soc Lond B Biol Sci. 2004 Jun 29;359(1446):1021-44 - PubMed
  17. Circ Res. 2001 Mar 16;88(5):529-35 - PubMed
  18. Cardiovasc Res. 2006 Jul 15;71(2):208-15 - PubMed
  19. Circulation. 1999 Jun 8;99(22):2934-41 - PubMed
  20. Am J Physiol Heart Circ Physiol. 2003 Feb;284(2):H449-55 - PubMed
  21. Cardiovasc Res. 2008 Jan 15;77(2):256-64 - PubMed
  22. Br J Pharmacol. 2011 Mar;162(5):1012-28 - PubMed
  23. J Physiol. 2004 Mar 16;555(Pt 3):589-606 - PubMed
  24. Am J Nephrol. 2007;27(6):649-60 - PubMed
  25. Free Radic Biol Med. 2005 Dec 15;39(12):1601-10 - PubMed
  26. Nature. 2000 Nov 23;408(6811):492-5 - PubMed
  27. Circulation. 2015 Feb 17;131(7):643-55 - PubMed
  28. Circulation. 2002 Jan 29;105(4):509-15 - PubMed
  29. Biochem Biophys Res Commun. 2001 Apr 27;283(1):143-8 - PubMed
  30. Biochem J. 2002 Mar 15;362(Pt 3):561-71 - PubMed
  31. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17 - PubMed
  32. J Cell Physiol. 2016 May;231(5):1130-41 - PubMed
  33. J Mol Cell Cardiol. 1978 Apr;10(4):363-85 - PubMed
  34. Am J Cardiol. 1995 Nov 1;76(12):957-9 - PubMed
  35. Antioxid Redox Signal. 2011 Apr 1;14(7):1315-35 - PubMed
  36. Circ Res. 2003 Feb 7;92(2):136-8 - PubMed
  37. Circ Res. 2010 Apr 16;106(7):1253-64 - PubMed
  38. J Hypertens. 2000 Jun;18(6):655-73 - PubMed
  39. J Mol Cell Cardiol. 2002 Apr;34(4):379-88 - PubMed
  40. Pflugers Arch. 2017 Apr 28;:null - PubMed
  41. J Clin Invest. 2005 Mar;115(3):509-17 - PubMed

Publication Types