Display options
Share it on

Front Immunol. 2017 Sep 20;8:1140. doi: 10.3389/fimmu.2017.01140. eCollection 2017.

Unraveling Macrophage Heterogeneity in Erythroblastic Islands.

Frontiers in immunology

Katie Giger Seu, Julien Papoin, Rose Fessler, Jimmy Hom, Gang Huang, Narla Mohandas, Lionel Blanc, Theodosia A Kalfa

Affiliations

  1. Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
  2. Laboratory of Developmental Erythropoiesis, Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.
  3. Department of Molecular Medicine and Pediatrics, Hofstra-Northwell School of Medicine, Hempstead, NY, United States.
  4. Red Cell Physiology Laboratory, Lindsey F Kimball Research Institute, New York Blood Center, New York, NY, United States.

PMID: 28979259 PMCID: PMC5611421 DOI: 10.3389/fimmu.2017.01140

Abstract

Mammalian erythropoiesis occurs within erythroblastic islands (EBIs), niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80

Keywords: CD11b; CD163; CD169; VCAM-1; erythroblastic islands; erythropoiesis; imaging flow cytometry; macrophages

References

  1. Trends Mol Med. 2015 Oct;21(10 ):609-21 - PubMed
  2. Front Physiol. 2014 Jan 28;5:3 - PubMed
  3. Curr Opin Hematol. 2011 May;18(3):139-45 - PubMed
  4. J Exp Med. 1995 Jan 1;181(1):411-5 - PubMed
  5. Exp Hematol. 2014 Jul;42(7):547-61.e4 - PubMed
  6. Br J Haematol. 1990 Nov;76(3):323-32 - PubMed
  7. Blood. 1998 Oct 15;92(8):2940-50 - PubMed
  8. Blood. 1958 Aug;13(8):789-94 - PubMed
  9. Blood. 2008 Feb 1;111(3):1700-8 - PubMed
  10. Blood. 2012 Jun 21;119(25):6118-27 - PubMed
  11. Curr Opin Hematol. 2008 May;15(3):155-61 - PubMed
  12. Curr Opin Hematol. 2010 May;17(3):177-83 - PubMed
  13. Biomed Res Int. 2015;2015:873628 - PubMed
  14. J Exp Med. 1989 Apr 1;169(4):1333-46 - PubMed
  15. Blood. 2007 Jun 15;109(12):5223-9 - PubMed
  16. Blood. 2008 Aug 1;112(3):470-8 - PubMed
  17. J Cell Biol. 1988 Mar;106(3):649-56 - PubMed
  18. Rev Hematol. 1958 Jan-Mar;13(1):8-11 - PubMed
  19. Science. 2016 Sep 9;353(6304): - PubMed
  20. Blood. 1990 Sep 15;76(6):1131-8 - PubMed
  21. Nat Med. 2013 Apr;19(4):437-45 - PubMed
  22. J Exp Med. 2011 Feb 14;208(2):261-71 - PubMed
  23. J Exp Med. 1985 Sep 1;162(3):993-1014 - PubMed
  24. Curr Top Dev Biol. 2008;82:23-53 - PubMed
  25. J Exp Med. 1988 Sep 1;168(3):1193-8 - PubMed
  26. Immunol Res. 2015 Dec;63(1-3):75-89 - PubMed
  27. Exp Hematol. 2016 Aug;44(8):653-63 - PubMed
  28. Eur J Immunol. 2011 Sep;41(9):2472-6 - PubMed
  29. Blood. 2006 Sep 15;108(6):2064-71 - PubMed
  30. J Cell Sci Suppl. 1988;9:185-206 - PubMed
  31. J Cell Sci. 1991 May;99 ( Pt 1):141-7 - PubMed
  32. Front Immunol. 2015 Jan 22;5:683 - PubMed
  33. Blood. 2015 Sep 17;126(12):1473-82 - PubMed
  34. Blood. 2008 Feb 15;111(4):2409-17 - PubMed
  35. Blood. 2015 May 7;125(19):2893-7 - PubMed
  36. J Leukoc Biol. 1999 Nov;66(5):705-11 - PubMed
  37. J Exp Med. 1986 Dec 1;164(6):1862-75 - PubMed
  38. Development. 1999 Nov;126(22):5073-84 - PubMed
  39. Transfus Med Hemother. 2012 Oct;39(5):302-7 - PubMed
  40. Nat Med. 2013 Apr;19(4):429-36 - PubMed

Publication Types