Display options
Share it on

ACS Cent Sci. 2017 Sep 27;3(9):975-985. doi: 10.1021/acscentsci.7b00247. Epub 2017 Aug 09.

General Synthetic Method for Si-Fluoresceins and Si-Rhodamines.

ACS central science

Jonathan B Grimm, Timothy A Brown, Ariana N Tkachuk, Luke D Lavis

Affiliations

  1. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.

PMID: 28979939 PMCID: PMC5620978 DOI: 10.1021/acscentsci.7b00247

Abstract

The century-old fluoresceins and rhodamines persist as flexible scaffolds for fluorescent and fluorogenic compounds. Extensive exploration of these xanthene dyes has yielded general structure-activity relationships where the development of new probes is limited only by imagination and organic chemistry. In particular, replacement of the xanthene oxygen with silicon has resulted in new red-shifted Si-fluoresceins and Si-rhodamines, whose high brightness and photostability enable advanced imaging experiments. Nevertheless, efforts to tune the chemical and spectral properties of these dyes have been hindered by difficult synthetic routes. Here, we report a general strategy for the efficient preparation of Si-fluoresceins and Si-rhodamines from readily synthesized bis(2-bromophenyl)silane intermediates. These dibromides undergo metal/bromide exchange to give bis-aryllithium or bis(aryl Grignard) intermediates, which can then add to anhydride or ester electrophiles to afford a variety of Si-xanthenes. This strategy enabled efficient (3-5 step) syntheses of known and novel Si-fluoresceins, Si-rhodamines, and related dye structures. In particular, we discovered that previously inaccessible tetrafluorination of the bottom aryl ring of the Si-rhodamines resulted in dyes with improved visible absorbance in solution, and a convenient derivatization through fluoride-thiol substitution. This modular, divergent synthetic method will expand the palette of accessible xanthenoid dyes across the visible spectrum, thereby pushing further the frontiers of biological imaging.

References

  1. Science. 2016 Jun 17;352(6292):1425-9 - PubMed
  2. Annu Rev Biochem. 2017 Jun 20;86:825-843 - PubMed
  3. ACS Appl Mater Interfaces. 2016 Sep 7;8(35):22953-62 - PubMed
  4. Cell. 2015 Apr 23;161(3):513-525 - PubMed
  5. J Am Chem Soc. 2015 Jun 10;137(22):7145-51 - PubMed
  6. Anal Chem. 2015 Sep 1;87(17):9061-9 - PubMed
  7. Cell Calcium. 2000 Feb;27(2):97-106 - PubMed
  8. J Lipid Res. 1985 Jul;26(7):781-9 - PubMed
  9. Chem Commun (Camb). 2016 Jul 19;52(60):9442-5 - PubMed
  10. J Org Chem. 2005 Aug 19;70(17):6907-12 - PubMed
  11. Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4756-61 - PubMed
  12. Chemistry. 2015 Sep 14;21(38):13344-56 - PubMed
  13. Science. 1987 Oct 16;238(4825):336-41 - PubMed
  14. Chemistry. 2010 Jan 4;16(1):158-66 - PubMed
  15. Angew Chem Int Ed Engl. 2010 May 3;49(20):3520-3 - PubMed
  16. Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11206-9 - PubMed
  17. Spectrochim Acta A Mol Biomol Spectrosc. 2001 Sep 14;57(11):2271-83 - PubMed
  18. ACS Chem Biol. 2011 Jun 17;6(6):600-8 - PubMed
  19. ACS Chem Biol. 2013;8(6):1303-10 - PubMed
  20. Nat Chem. 2012 Dec;4(12):973-84 - PubMed
  21. Prog Mol Biol Transl Sci. 2013;113:1-34 - PubMed
  22. ACS Chem Biol. 2008 Mar 20;3(3):142-55 - PubMed
  23. ACS Chem Biol. 2014 Apr 18;9(4):855-66 - PubMed
  24. Photochem Photobiol Sci. 2012 Mar;11(3):522-32 - PubMed
  25. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8829-34 - PubMed
  26. J Am Chem Soc. 2015 Sep 2;137(34):10890-3 - PubMed
  27. Chem Commun (Camb). 2014 Nov 28;50(92):14374-7 - PubMed
  28. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7436-40 - PubMed
  29. Analyst. 2015 Feb 7;140(3):685-95 - PubMed
  30. Curr Pharm Des. 2013;19(30):5414-20 - PubMed
  31. Anal Biochem. 2011 Dec 1;419(1):9-16 - PubMed
  32. ACS Chem Biol. 2006 May 23;1(4):252-60 - PubMed
  33. Chem Commun (Camb). 2011 Apr 14;47(14):4162-4 - PubMed
  34. Bioorg Med Chem Lett. 2005 May 2;15(9):2335-8 - PubMed
  35. Methods Enzymol. 1998;291:63-78 - PubMed
  36. J Histochem Cytochem. 1999 Sep;47(9):1179-88 - PubMed
  37. Nat Methods. 2016 Apr;13(4):359-65 - PubMed
  38. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2114-9 - PubMed
  39. Chemistry. 2014 Oct 6;20(41):13162-73 - PubMed
  40. Bioconjug Chem. 2016 Feb 17;27(2):474-80 - PubMed
  41. Nat Biotechnol. 2003 Jan;21(1):86-9 - PubMed
  42. J Am Chem Soc. 2016 Aug 3;138(30):9365-8 - PubMed
  43. Chemistry. 2015 Nov 16;21(47):16754-8 - PubMed
  44. Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250 - PubMed
  45. Chem Commun (Camb). 2016 Oct 11;52(83):12290-12293 - PubMed
  46. Nat Chem Biol. 2016 Aug;12 (8):586-92 - PubMed
  47. Chem Commun (Camb). 2008 Apr 21;(15):1780-2 - PubMed
  48. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990-4 - PubMed
  49. Elife. 2016 Aug 03;5:null - PubMed
  50. Nat Methods. 2016 Dec;13(12 ):985-988 - PubMed
  51. J Am Chem Soc. 2015 Sep 2;137(34):10886-9 - PubMed
  52. J Am Chem Soc. 2005 Nov 30;127(47):16652-9 - PubMed
  53. Proc Natl Acad Sci U S A. 1963 Jul;50:1-6 - PubMed
  54. J Biol Chem. 1989 May 15;264(14):8171-8 - PubMed
  55. ACS Chem Biol. 2012 Feb 17;7(2):289-93 - PubMed
  56. J Am Chem Soc. 2011 Sep 14;133(36):14157-9 - PubMed
  57. ACS Chem Biol. 2008 Jun 20;3(6):373-82 - PubMed
  58. Nat Chem. 2013 Feb;5(2):132-9 - PubMed
  59. J Am Chem Soc. 2015 Aug 26;137(33):10767-76 - PubMed
  60. Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1723-7 - PubMed
  61. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10242-6 - PubMed
  62. Nat Commun. 2015 Oct 01;6:8497 - PubMed
  63. Chemistry. 2017 Sep 7;23 (50):12114-12119 - PubMed
  64. Nat Methods. 2014 Jul;11(7):731-3 - PubMed

Publication Types