Display options
Share it on

ACS Appl Mater Interfaces. 2017 Oct 18;9(41):35516-35525. doi: 10.1021/acsami.7b07342. Epub 2017 Oct 03.

Tuning the Endocytosis Mechanism of Zr-Based Metal-Organic Frameworks through Linker Functionalization.

ACS applied materials & interfaces

Claudia Orellana-Tavra, Salame Haddad, Ross J Marshall, Isabel Abánades Lázaro, Gerard Boix, Inhar Imaz, Daniel Maspoch, Ross S Forgan, David Fairen-Jimenez

Affiliations

  1. Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering and Biotechnology, University of Cambridge , Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
  2. WestCHEM School of Chemistry, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K.
  3. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain.
  4. ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.

PMID: 28925254 PMCID: PMC5663390 DOI: 10.1021/acsami.7b07342

Abstract

A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4'-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs.

Keywords: drug delivery; endocytosis; metabolic pathways; metal−organic frameworks

References

  1. J Microsc. 2006 Dec;224(Pt 3):213-32 - PubMed
  2. Science. 2013 Aug 30;341(6149):1230444 - PubMed
  3. Cell Res. 2010 Mar;20(3):256-75 - PubMed
  4. Chem Commun (Camb). 2014 Aug 14;50(63):8779-82 - PubMed
  5. PLoS One. 2011;6(9):e24438 - PubMed
  6. Nat Rev Drug Discov. 2008 Sep;7(9):771-82 - PubMed
  7. Biomater Sci. 2015 Feb;3(2):323-35 - PubMed
  8. Nat Cell Biol. 2001 May;3(5):473-83 - PubMed
  9. Nano Lett. 2006 Apr;6(4):662-8 - PubMed
  10. Langmuir. 2012 Nov 6;28(44):15606-13 - PubMed
  11. J Am Chem Soc. 2013 Jul 17;135(28):10525-32 - PubMed
  12. Nat Mater. 2010 Feb;9(2):172-8 - PubMed
  13. Adv Drug Deliv Rev. 1998 Feb 2;29(3):215-228 - PubMed
  14. Interface Focus. 2016 Aug 6;6(4):20160027 - PubMed
  15. Chem. 2017 Apr 13;2(4):561-578 - PubMed
  16. J Biol Chem. 2009 Jul 10;284(28):19053-66 - PubMed
  17. Int J Nanomedicine. 2008;3(2):133-49 - PubMed
  18. Nat Rev Mol Cell Biol. 2007 Aug;8(8):603-12 - PubMed
  19. Biomacromolecules. 2008 Feb;9(2):435-43 - PubMed
  20. Biochem Biophys Res Commun. 2007 Feb 2;353(1):26-32 - PubMed
  21. Biochem J. 2004 Jan 1;377(Pt 1):159-69 - PubMed
  22. Cell. 2003 Nov 26;115(5):513-21 - PubMed
  23. Mol Biol Cell. 2002 Nov;13(11):4001-12 - PubMed
  24. J Am Chem Soc. 2008 Oct 22;130(42):13850-1 - PubMed
  25. Int J Nanomedicine. 2014 May 06;9 Suppl 1:51-63 - PubMed
  26. J Virol. 2012 Mar;86(5):2621-31 - PubMed
  27. J Am Chem Soc. 2008 Aug 6;130(31):10440-4 - PubMed
  28. Nano Lett. 2007 Jun;7(6):1542-50 - PubMed
  29. Annu Rev Cell Dev Biol. 1996;12:575-625 - PubMed
  30. Macromol Biosci. 2008 Dec 8;8(12):1135-43 - PubMed
  31. Int J Nanomedicine. 2012;7:5577-91 - PubMed
  32. Chem Commun (Camb). 2015 Sep 21;51(73):13878-81 - PubMed
  33. Exp Cell Res. 2005 Oct 15;310(1):54-65 - PubMed
  34. Microbes Infect. 2001 Jul;3(9):755-61 - PubMed
  35. J Am Chem Soc. 2014 Apr 9;136(14):5181-4 - PubMed
  36. Adv Healthc Mater. 2016 Sep;5(17):2261-70 - PubMed
  37. J Cell Biol. 2005 Jan 31;168(3):477-88 - PubMed
  38. Immunology. 2005 Dec;116(4):513-24 - PubMed
  39. Cell. 2004 Sep 17;118(6):767-80 - PubMed
  40. Beilstein J Nanotechnol. 2014 Sep 09;5:1477-90 - PubMed
  41. Chem Commun (Camb). 2013 Oct 21;49(82):9449-51 - PubMed
  42. Nanomedicine. 2012 Feb;8(2):147-66 - PubMed
  43. J Am Chem Soc. 2017 Feb 15;139(6):2359-2368 - PubMed
  44. Chem Rev. 2012 Feb 8;112(2):1232-68 - PubMed
  45. J Cell Physiol. 1989 Mar;138(3):519-26 - PubMed
  46. J Drug Target. 2004;12(9-10):623-33 - PubMed
  47. Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33 - PubMed
  48. FASEB J. 2005 Mar;19(3):311-30 - PubMed

Publication Types