Display options
Share it on

ACS Appl Mater Interfaces. 2017 Oct 11;9(40):34970-34978. doi: 10.1021/acsami.7b10643. Epub 2017 Sep 29.

Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells.

ACS applied materials & interfaces

Ute B Cappel, Sebastian Svanström, Valeria Lanzilotto, Fredrik O L Johansson, Kerttu Aitola, Bertrand Philippe, Erika Giangrisostomi, Ruslan Ovsyannikov, Torsten Leitner, Alexander Föhlisch, Svante Svensson, Nils Mårtensson, Gerrit Boschloo, Andreas Lindblad, Håkan Rensmo

Affiliations

  1. Division of Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University , P.O. Box 516, 751 20 Uppsala, Sweden.
  2. Uppsala-Berlin Joint Laboratory on Next Generation Photoelectron Spectroscopy , Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  3. Department of Chemistry-Ångström Laboratory, Uppsala University , P.O. Box 523, 751 20 Uppsala, Sweden.
  4. Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin GmbH , Albert-Einstein-Straße 15, 12489 Berlin, Germany.
  5. Institute of Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany.

PMID: 28925263 PMCID: PMC5663419 DOI: 10.1021/acsami.7b10643

Abstract

Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as photoinduced phase separation and ion migration. In this paper, we implement a new methodology combining visible laser illumination of a mixed-ion perovskite ((FAPbI

Keywords: ion migration; laser illumination; lead halide perovskite; phase separation; photoelectron spectroscopy; stability

References

  1. J Am Chem Soc. 2016 Aug 17;138(32):10331-43 - PubMed
  2. Nature. 2017 May 11;545(7653):208-212 - PubMed
  3. Science. 2012 Nov 2;338(6107):643-7 - PubMed
  4. J Am Chem Soc. 2009 May 6;131(17):6050-1 - PubMed
  5. Chem Rev. 2016 Nov 9;116(21):12956-13008 - PubMed
  6. Science. 2016 Jan 8;351(6269):151-5 - PubMed
  7. Adv Mater. 2015 Dec 22;27(48):7938-44 - PubMed
  8. Energy Environ Sci. 2016 Jun 8;9(6):1989-1997 - PubMed
  9. Science. 2013 Oct 18;342(6156):341-4 - PubMed
  10. Chem Sci. 2015 Jan 1;6(1):613-617 - PubMed
  11. Sci Adv. 2016 Jan 01;2(1):e1501170 - PubMed
  12. Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3151-7 - PubMed
  13. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8208-12 - PubMed
  14. J Phys Chem Lett. 2014 Feb 20;5(4):648-53 - PubMed
  15. Science. 2016 Oct 14;354(6309):206-209 - PubMed
  16. Science. 2016 Nov 18;354(6314):861-865 - PubMed
  17. Opt Lett. 2015 May 15;40(10):2265-8 - PubMed

Publication Types