Display options
Share it on

Oncol Lett. 2017 Sep;14(3):3261-3267. doi: 10.3892/ol.2017.6504. Epub 2017 Jun 30.

Tumor-initiating cells contribute to radiation resistance in primary human renal clear cell carcinomas by activating the DNA damage checkpoint response.

Oncology letters

Bo Li, Yong-Ju Gao, Xin-Yu Wu, Jing Cui, Ye Long, Jun-Ling Xu, De-Gang Ding

Affiliations

  1. Department of Nuclear Medicine, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China.
  2. Department of Urology Surgery, Henan Provincial People's Hospital and The People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China.

PMID: 28927075 PMCID: PMC5588012 DOI: 10.3892/ol.2017.6504

Abstract

The use of radiotherapy in patients with clear cell renal carcinoma (ccRCC) is predominantly limited to palliation of metastases or control of local growth, because ccRCC cells readily develop radioresistance. The mechanisms underlying ccRCC resistance remain elusive. The present study demonstrated that ccRCC cells that survive fractionated radiation treatment display tumor-initiating cell (TIC) characteristics, such as high self-renewal and tumorigenic capacities, and overexpress stemness genes. ccRCC cells that survived fractionated radiation exhibited increased activation of the DNA damage checkpoint response and G2/M phase arrest compared with sham-irradiated cells. The results of the present study suggest that ionizing radiation destroys the bulk of tumor cells within ccRCC, but spares TICs; this subpopulation confers ccRCC radioresistance and may cause tumor recurrence or relapse following radiotherapy. Furthermore, these findings indicate that the DNA damage checkpoint response may serve as a potential therapeutic target for overcoming resistance of TICs in patients with ccRCC.

Keywords: DNA damage checkpoint; ionizing radiation; radiation resistance; renal clear cell carcinoma; tumor initiating cells

References

  1. PLoS One. 2013 Jul 11;8(7):e68293 - PubMed
  2. Cell Commun Signal. 2010 May 11;8(1):6 - PubMed
  3. Urologia. 2015 Jan-Mar;82(1):46-53 - PubMed
  4. Cancer Res. 2012 Jun 1;72(11):2844-54 - PubMed
  5. Cell Stem Cell. 2011 May 6;8(5):486-98 - PubMed
  6. Stem Cells. 2010 Apr;28(4):639-48 - PubMed
  7. Cancer Lett. 2012 Sep 28;322(2):139-47 - PubMed
  8. Cancer Res. 2006 Oct 1;66(19):9339-44 - PubMed
  9. Adv Cancer Res. 2010;108:73-112 - PubMed
  10. DNA Repair (Amst). 2002 Dec 5;1(12 ):983-94 - PubMed
  11. Lancet. 2009 Mar 28;373(9669):1119-32 - PubMed
  12. Lancet Oncol. 2014 Apr;15(4):e170-7 - PubMed
  13. PLoS One. 2013 Oct 08;8(10):e75463 - PubMed
  14. Cancer Lett. 2009 May 18;277(2):227-34 - PubMed
  15. Nature. 2000 Nov 23;408(6811):433-9 - PubMed
  16. J Biol Chem. 2009 Dec 4;284(49):34223-30 - PubMed
  17. Eur Urol. 2007 Jun;51(6):1502-10 - PubMed
  18. Oncol Rep. 2014 Mar;31(3):1035-42 - PubMed
  19. J Urol. 2014 Dec;192(6):1831-41 - PubMed
  20. Cancer Lett. 2013 Sep 10;338(1):141-6 - PubMed
  21. Annu Rev Biochem. 2004;73:39-85 - PubMed
  22. Cell Stem Cell. 2011 Feb 4;8(2):136-47 - PubMed
  23. Curr Treat Options Oncol. 2003 Oct;4(5):385-90 - PubMed
  24. J Exp Med. 1996 Apr 1;183(4):1797-806 - PubMed
  25. CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29 - PubMed
  26. FASEB J. 2008 Oct;22(10 ):3696-705 - PubMed
  27. Cancer Lett. 2010 Dec 28;299(2):150-60 - PubMed
  28. Eur Urol. 2015 Jan;67(1):100-10 - PubMed
  29. Nat Rev Cancer. 2008 Oct;8(10):755-68 - PubMed
  30. Annu Rev Med. 2007;58:267-84 - PubMed

Publication Types