Display options
Share it on

Sci Rep. 2017 Sep 26;7(1):12299. doi: 10.1038/s41598-017-12525-x.

Enhanced skyrmion stability due to exchange frustration.

Scientific reports

S von Malottki, B Dupé, P F Bessarab, A Delin, S Heinze

Affiliations

  1. Institute of Theoretical Physics and Astrophysics, University of Kiel, 24098, Kiel, Germany.
  2. Institute of Physics, University of Mainz, 55128, Mainz, Germany.
  3. School of Engineering and Natural Sciences - Science Institute, University of Iceland, 107, Reykjavik, Iceland.
  4. University ITMO, St. Petersburg, 197101, Russia.
  5. Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Electrum 229, SE-16440, Kista, Sweden.
  6. Department of Physics and Astronomy, Materials Theory Division, Uppsala University, Box 516, SE-75120, Uppsala, Sweden.
  7. Institute of Theoretical Physics and Astrophysics, University of Kiel, 24098, Kiel, Germany. [email protected].

PMID: 28951587 PMCID: PMC5615047 DOI: 10.1038/s41598-017-12525-x

Abstract

Skyrmions are localized, topologically non-trivial spin structures which have raised high hopes for future spintronic applications. A key issue is skyrmion stability with respect to annihilation into the ferromagnetic state. Energy barriers for this collapse have been calculated taking only nearest neighbor exchange interactions into account. Here, we demonstrate that exchange frustration can greatly enhance skyrmion stability. We focus on the prototypical film system Pd/Fe/Ir(111) and use an atomistic spin model parametrized from first-principles calculations. We show that energy barriers and critical fields of skyrmion collapse as well as skyrmion lifetimes are drastically enhanced due to frustrated exchange and that antiskyrmions are metastable. In contrast an effective nearest-neighbor exchange model can only account for equilibrium properties of skyrmions such as their magnetic field dependent profile or the zero temperature phase diagram. Our work shows that frustration of long range exchange interactions - a typical feature in itinerant electron magnets - is a route towards enhanced skyrmion stability even in systems with a ferromagnetic ground state.

References

  1. J Phys Condens Matter. 2017 May 24;29(20):205801 - PubMed
  2. Phys Rev Lett. 2009 Oct 9;103(15):157201 - PubMed
  3. Sci Rep. 2017 Jun 22;7(1):4060 - PubMed
  4. Nat Nanotechnol. 2013 Dec;8(12):899-911 - PubMed
  5. Nat Commun. 2016 Jun 03;7:11779 - PubMed
  6. Phys Rev Lett. 2016 Apr 29;116(17):177202 - PubMed
  7. Science. 2009 Feb 13;323(5916):915-9 - PubMed
  8. J Phys Condens Matter. 2010 May 5;22(17):176001 - PubMed
  9. Nat Commun. 2014 Jun 04;5:4030 - PubMed
  10. Nat Mater. 2013 Jul;12(7):611-6 - PubMed
  11. Nat Nanotechnol. 2015 Dec;10(12):1039-42 - PubMed
  12. Phys Rev Lett. 2015 May 1;114(17):177203 - PubMed
  13. Phys Rev Lett. 2012 Jan 6;108(1):017206 - PubMed
  14. Nat Commun. 2015 Sep 23;6:8275 - PubMed
  15. Science. 2013 Aug 9;341(6146):636-9 - PubMed
  16. Nat Nanotechnol. 2013 Mar;8(3):152-6 - PubMed
  17. Phys Rev Lett. 1988 Nov 21;61(21):2472-2475 - PubMed
  18. Nat Nanotechnol. 2013 Nov;8(11):839-44 - PubMed
  19. Science. 2012 Apr 13;336(6078):198-201 - PubMed
  20. Nat Commun. 2015 Oct 14;6:8455 - PubMed
  21. Nature. 2007 May 10;447(7141):190-3 - PubMed
  22. Phys Rev Lett. 2008 Jul 11;101(2):027201 - PubMed
  23. Nature. 2010 Jun 17;465(7300):901-4 - PubMed
  24. Phys Rev B Condens Matter. 1989 Mar 1;39(7):4828-4830 - PubMed
  25. Nat Nanotechnol. 2013 Jul;8(7):527-33 - PubMed

Publication Types