Display options
Share it on

Nat Commun. 2017 Sep 01;8(1):406. doi: 10.1038/s41467-017-00544-1.

Ultrathin metal-organic framework membrane production by gel-vapour deposition.

Nature communications

Wanbin Li, Pengcheng Su, Zhanjun Li, Zehai Xu, Fei Wang, Huase Ou, Jiaheng Zhang, Guoliang Zhang, Eddy Zeng

Affiliations

  1. School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, People's Republic of China. [email protected].
  2. Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
  3. School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, People's Republic of China.
  4. Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. [email protected].

PMID: 28864827 PMCID: PMC5581339 DOI: 10.1038/s41467-017-00544-1

Abstract

Ultrathin, molecular sieving membranes composed of microporous materials offer great potential to realize high permeances and selectivities in separation applications, but strategies for their production have remained a challenge. Here we show a route for the scalable production of nanometre-thick metal-organic framework (MOF) molecular sieving membranes, specifically via gel-vapour deposition, which combines sol-gel coating with vapour deposition for solvent-/modification-free and precursor-/time-saving synthesis. The uniform MOF membranes thus prepared have controllable thicknesses, down to ~17 nm, and show one to three orders of magnitude higher gas permeances than those of conventional membranes, up to 215.4 × 10

References

  1. Science. 2014 Jan 3;343(6166):66-9 - PubMed
  2. Chem Sci. 2017 Jan 1;8(1):325-333 - PubMed
  3. Nat Mater. 2009 Jun;8(6):481-4 - PubMed
  4. ACS Appl Mater Interfaces. 2016 Mar 9;8(9):6236-44 - PubMed
  5. Nat Chem. 2016 Apr;8(4):377-83 - PubMed
  6. Science. 2016 Aug 19;353(6301):804-7 - PubMed
  7. Science. 2014 Dec 12;346(6215):1356-9 - PubMed
  8. Angew Chem Int Ed Engl. 2012 Oct 15;51(42):10615-8 - PubMed
  9. Science. 2008 Feb 15;319(5865):939-43 - PubMed
  10. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10186-91 - PubMed
  11. Angew Chem Int Ed Engl. 2016 Feb 5;55(6):2048-52 - PubMed
  12. Nat Mater. 2016 Mar;15(3):304-10 - PubMed
  13. J Am Chem Soc. 2014 Oct 15;136(41):14353-6 - PubMed
  14. Science. 2014 Jul 4;345(6192):72-5 - PubMed
  15. J Am Chem Soc. 2013 Nov 27;135(47):17679-82 - PubMed
  16. Nat Chem. 2011 May;3(5):382-7 - PubMed
  17. Science. 2013 Oct 4;342(6154):91-5 - PubMed
  18. Chem Commun (Camb). 2014 Sep 4;50(68):9711-3 - PubMed
  19. Nanoscale. 2015 Apr 28;7(16):7291-8 - PubMed
  20. Nat Mater. 2016 Aug;15(8):845-9 - PubMed
  21. Science. 2013 Oct 4;342(6154):95-8 - PubMed
  22. Chem Commun (Camb). 2011 Oct 7;47(37):10275-7 - PubMed
  23. Chemistry. 2015 May 4;21(19):7224-30 - PubMed
  24. Science. 2003 Apr 18;300(5618):456-60 - PubMed
  25. J Am Chem Soc. 2009 Feb 11;131(5):1646-7 - PubMed
  26. Science. 2011 Dec 16;334(6062):1533-8 - PubMed
  27. Nat Mater. 2017 Mar;16(3):289-297 - PubMed
  28. Chem Commun (Camb). 2015 Jun 30;51(56):11283-5 - PubMed
  29. ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25337-42 - PubMed
  30. Angew Chem Int Ed Engl. 2006 Feb 27;45(10):1557-9 - PubMed
  31. J Am Chem Soc. 2013 Jul 24;135(29):10763-8 - PubMed
  32. J Phys Chem A. 2008 Dec 11;112(49):12602-6 - PubMed
  33. Angew Chem Int Ed Engl. 2015 Mar 2;54(10):3028-32 - PubMed
  34. Nat Commun. 2016 Apr 19;7:11315 - PubMed

Publication Types