Display options
Share it on

Proc Natl Acad Sci U S A. 2017 Oct 03;114(40):10596-10600. doi: 10.1073/pnas.1713261114. Epub 2017 Sep 19.

Topological semimetal in honeycomb lattice LnSI.

Proceedings of the National Academy of Sciences of the United States of America

Simin Nie, Gang Xu, Fritz B Prinz, Shou-Cheng Zhang

Affiliations

  1. Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.
  2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
  3. Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected].
  4. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
  5. Department of Physics, Stanford University, Stanford, CA 94305-4045.

PMID: 28928149 PMCID: PMC5635928 DOI: 10.1073/pnas.1713261114

Abstract

Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

Keywords: Fermi arc; honeycomb lattice; ideal Weyl fermion; nodal-line semimetal; topological insulator

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Nat Commun. 2016 Mar 17;7:11006 - PubMed
  2. Nature. 2015 Nov 26;527(7579):495-8 - PubMed
  3. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  4. Nat Mater. 2016 Oct 25;15(11):1145-1148 - PubMed
  5. Phys Rev Lett. 2015 Oct 30;115(18):186802 - PubMed
  6. Phys Rev Lett. 2011 Oct 28;107(18):186806 - PubMed
  7. Science. 2015 Aug 7;349(6248):613-7 - PubMed
  8. Phys Rev Lett. 2005 Nov 25;95(22):226801 - PubMed
  9. Phys Rev Lett. 2016 Jul 22;117(4):047001 - PubMed
  10. Nat Commun. 2016 Apr 01;7:11136 - PubMed
  11. Nat Commun. 2015 Jun 12;6:7373 - PubMed
  12. Nano Lett. 2015 Mar 11;15(3):2019-23 - PubMed
  13. Phys Rev Lett. 2015 Jul 17;115(3):036806 - PubMed
  14. Nat Commun. 2016 Feb 25;7:10735 - PubMed
  15. Phys Rev B Condens Matter. 1995 Aug 15;52(8):R5467-R5470 - PubMed
  16. J Phys Condens Matter. 2016 Aug 3;28(30):303001 - PubMed
  17. Phys Rev Lett. 2016 May 13;116(19):195501 - PubMed
  18. Phys Rev Lett. 2005 Sep 30;95(14):146802 - PubMed
  19. Phys Rev Lett. 2011 Sep 16;107(12):127205 - PubMed
  20. Phys Rev Lett. 2015 Nov 20;115(21):217601 - PubMed
  21. Phys Rev Lett. 2016 Jun 3;116(22):226801 - PubMed
  22. Phys Rev Lett. 2015 Jul 17;115(3):036807 - PubMed
  23. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  24. Nat Commun. 2016 May 17;7:11615 - PubMed
  25. Phys Rev Lett. 2012 Jun 29;108(26):266802 - PubMed

Publication Types