Display options
Share it on

Bioengineering (Basel). 2017 Jan 18;4(1). doi: 10.3390/bioengineering4010001.

Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials.

Bioengineering (Basel, Switzerland)

Donald C Aduba, Hu Yang

Affiliations

  1. Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA. [email protected].
  2. Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA. [email protected].
  3. Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA. [email protected].
  4. Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA. [email protected].

PMID: 28952482 PMCID: PMC5590441 DOI: 10.3390/bioengineering4010001

Abstract

Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide's naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development.

Keywords: foam; hydrogel; nanofiber; polysaccharide; skin; wound dressing; wound healing; wound management

References

  1. Am J Clin Dermatol. 2006;7(6):353-7 - PubMed
  2. BMJ. 2006 Apr 1;332(7544):777-80 - PubMed
  3. J Agric Food Chem. 2008 Sep 24;56(18):8609-18 - PubMed
  4. Carbohydr Polym. 2016 Jan 20;136:860-6 - PubMed
  5. Appl Environ Microbiol. 2008 Apr;74(7):2171-8 - PubMed
  6. Wounds. 2013 Dec;25(12):328-32 - PubMed
  7. Adv Mater. 2011 Mar 25;23(12):H41-56 - PubMed
  8. Carbohydr Polym. 2016 Aug 20;147:482-9 - PubMed
  9. J Biomed Mater Res A. 2016 Oct;104(10 ):2456-65 - PubMed
  10. Biomaterials. 1997 Sep;18(17):1169-74 - PubMed
  11. Carbohydr Polym. 2014 Aug 30;109:7-15 - PubMed
  12. Mar Drugs. 2010 Sep 02;8(9):2435-65 - PubMed
  13. Eur J Pharm Biopharm. 2005 Apr;59(3):557-64 - PubMed
  14. Wound Repair Regen. 2009 Nov-Dec;17(6):763-71 - PubMed
  15. Int J Biol Macromol. 2015 Jan;72:495-501 - PubMed
  16. Carbohydr Polym. 2012 Oct 15;90(3):1362-70 - PubMed
  17. J Biomater Sci Polym Ed. 2010;21(6-7):715-26 - PubMed
  18. Integr Biol (Camb). 2016 Oct 10;8(10 ):1059-1066 - PubMed
  19. J Biomater Sci Polym Ed. 2014;25(12):1278-91 - PubMed
  20. Biomacromolecules. 2013 Nov 11;14(11):4038-45 - PubMed
  21. Carbohydr Polym. 2014 Oct 13;111:530-7 - PubMed
  22. Biomaterials. 2000 Sep;21(17):1797-802 - PubMed
  23. Biomaterials. 2006 Jul;27(21):3934-44 - PubMed
  24. Burns Trauma. 2014 Oct 25;2(4):162-8 - PubMed
  25. Adv Drug Deliv Rev. 2006 Nov 30;58(12-13):1379-408 - PubMed
  26. Mar Drugs. 2011;9(9):1664-81 - PubMed
  27. Adv Drug Deliv Rev. 2010 Jan 31;62(1):83-99 - PubMed
  28. Adv Drug Deliv Rev. 2001 Nov 5;52(2):105-15 - PubMed
  29. Nanomedicine. 2016 Jul;12(5):1375-85 - PubMed
  30. J Biomed Mater Res. 1997 Nov;37(2):243-51 - PubMed
  31. Biomaterials. 1998 Jul;19(14):1287-94 - PubMed
  32. Int J Pharm. 2003 Jun 4;258(1-2):55-64 - PubMed
  33. Int Immunopharmacol. 2006 Mar;6(3):317-33 - PubMed
  34. J Control Release. 2007 May 14;119(1):5-24 - PubMed
  35. J Biomed Mater Res A. 2011 Jul;98(1):31-9 - PubMed
  36. Adv Drug Deliv Rev. 2008 Dec 14;60(15):1638-49 - PubMed
  37. Bioconjug Chem. 2005 Nov-Dec;16(6):1512-8 - PubMed
  38. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20976-81 - PubMed
  39. ACS Appl Mater Interfaces. 2012 May;4(5):2618-29 - PubMed
  40. Burns. 2001 Aug;27(5):517-22 - PubMed
  41. Plast Reconstr Surg Glob Open. 2015 Feb 06;3(1):e284 - PubMed
  42. Int J Biol Macromol. 2011 Oct 1;49(3):247-54 - PubMed
  43. Adv Drug Deliv Rev. 2009 Oct 5;61(12):1020-32 - PubMed
  44. Biomacromolecules. 2011 May 9;12 (5):1831-8 - PubMed
  45. Angew Chem Int Ed Engl. 2009;48(5):978-82 - PubMed
  46. Biotechnol Bioeng. 2003 Jun 5;82(5):578-89 - PubMed
  47. Carbohydr Polym. 2014 Jan 30;101:68-74 - PubMed
  48. J Biomater Appl. 1999 Oct;14(2):184-91 - PubMed
  49. Biomaterials. 2005 Sep;26(27):5427-32 - PubMed
  50. Angew Chem Int Ed Engl. 2007;46(30):5670-703 - PubMed
  51. J Ocul Pharmacol Ther. 2000 Jun;16(3):261-70 - PubMed
  52. J Control Release. 2000 Oct 3;69(1):169-84 - PubMed
  53. Wound Repair Regen. 1998 Sep-Oct;6(5):442-8 - PubMed
  54. Biomaterials. 2009 May;30(14):2753-63 - PubMed
  55. Biomaterials. 2007 Apr;28(10):1778-86 - PubMed
  56. Biomaterials. 1998 Dec;19(23):2101-27 - PubMed
  57. Int J Mol Sci. 2016 Nov 25;17 (12 ): - PubMed
  58. Eur J Pharm Biopharm. 2004 Jan;57(1):19-34 - PubMed
  59. Biomacromolecules. 2007 Jan;8(1):1-12 - PubMed
  60. Biochemistry. 1991 Oct 29;30(43):10363-70 - PubMed
  61. Biomacromolecules. 2008 Oct;9(10):2947-53 - PubMed
  62. J Pharm Sci. 2008 Aug;97(8):2892-923 - PubMed
  63. Biomaterials. 2002 Sep;23(17):3661-71 - PubMed
  64. Dev Biol. 1996 Feb 1;173(2):490-8 - PubMed
  65. Phys Rev Lett. 2003 Apr 11;90(14):144502 - PubMed
  66. Biomaterials. 1992;13(9):635-8 - PubMed
  67. Int J Mol Sci. 2010 Sep 21;11(9):3529-39 - PubMed
  68. Int Wound J. 2012 Dec;9(6):601-12 - PubMed
  69. Biomaterials. 2002 Feb;23(3):833-40 - PubMed
  70. Nature. 2008 Mar 6;452(7183):76-9 - PubMed
  71. Science. 1997 Apr 4;276(5309):75-81 - PubMed
  72. Biotechnol Genet Eng Rev. 1996;13:383-420 - PubMed
  73. Enzyme Microb Technol. 2016 Aug;90:1-18 - PubMed
  74. Int J Biol Macromol. 2016 Oct;91:85-91 - PubMed
  75. J Biomed Mater Res. 1997 Jan;34(1):21-8 - PubMed
  76. J Mater Sci Mater Med. 2000 May;11(5):319-25 - PubMed
  77. Int J Pharm. 2014 Mar 25;463(2):127-36 - PubMed
  78. Acta Biomater. 2009 Jul;5(6):1926-36 - PubMed

Publication Types