Display options
Share it on

Bioengineering (Basel). 2017 Mar 28;4(2). doi: 10.3390/bioengineering4020026.

Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant.

Bioengineering (Basel, Switzerland)

Clemens Troschl, Katharina Meixner, Bernhard Drosg

Affiliations

  1. Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Tulln 3430, Austria. [email protected].
  2. Bioenergy2020+ GmbH, Tulln 3430, Austria. [email protected].
  3. Bioenergy2020+ GmbH, Tulln 3430, Austria. [email protected].

PMID: 28952505 PMCID: PMC5590470 DOI: 10.3390/bioengineering4020026

Abstract

Cyanobacteria, as photoautotrophic organisms, provide the opportunity to convert CO2 to biomass with light as the sole energy source. Like many other prokaryotes, especially under nutrient deprivation, most cyanobacteria are able to produce polyhydroxyalkanoates (PHAs) as intracellular energy and carbon storage compounds. In contrast to heterotrophic PHA producers, photoautotrophic cyanobacteria do not consume sugars and, therefore, do not depend on agricultural crops, which makes them a green alternative production system. This review summarizes the recent advances in cyanobacterial PHA production. Furthermore, this study reports the working experience with different strains and cultivating conditions in a 200 L pilot plant. The tubular photobioreactor was built at the coal power plant in Dürnrohr, Austria in 2013 for direct utilization of flue gases. The main challenges were the selection of robust production strains, process optimization, and automation, as well as the CO2 availability.

Keywords: CO2 mitigation; cyanobacteria; flue gas utilization; photobioreactor; polyhydroxyalkanoates

References

  1. Appl Microbiol Biotechnol. 1999 Jun;51(6):765-72 - PubMed
  2. Appl Environ Microbiol. 2000 Oct;66(10):4440-8 - PubMed
  3. Bioresour Technol. 2001 Jan;76(2):85-90 - PubMed
  4. Plant Physiol. 2001 May;126(1):233-43 - PubMed
  5. J Biotechnol. 2001 Dec 28;92(2):113-31 - PubMed
  6. Trends Microbiol. 2002 Mar;10(3):134-42 - PubMed
  7. Nature. 2004 Jan 8;427(6970):117-20 - PubMed
  8. Biotechnol Lett. 2005 Jan;27(1):59-62 - PubMed
  9. Bioresour Technol. 2005 Jul;96(11):1304-10 - PubMed
  10. J Plant Physiol. 2005 Dec;162(12):1376-9 - PubMed
  11. J Biosci Bioeng. 2006 Feb;101(2):87-96 - PubMed
  12. Int J Biol Macromol. 2007 Apr 10;40(5):498-504 - PubMed
  13. Lett Appl Microbiol. 2007 Feb;44(2):194-8 - PubMed
  14. Plant J. 2008 May;54(4):621-39 - PubMed
  15. Chem Soc Rev. 2009 Aug;38(8):2434-46 - PubMed
  16. Int J Biol Macromol. 2010 Mar 1;46(2):255-60 - PubMed
  17. J Microbiol Biotechnol. 2010 Mar;20(3):609-14 - PubMed
  18. Appl Environ Microbiol. 2010 Sep;76(18):6101-7 - PubMed
  19. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Mar 1;879(7-8):511-9 - PubMed
  20. J Appl Phycol. 2011 Apr;23(2):265-269 - PubMed
  21. Bioresour Technol. 2012 Mar;108:211-5 - PubMed
  22. BMC Genomics. 2012 Feb 02;13:56 - PubMed
  23. Bioresour Technol. 2012 May;112:234-41 - PubMed
  24. Bioresour Technol. 2012 Sep;120:256-63 - PubMed
  25. Microbiology. 2012 Dec;158(Pt 12):3032-43 - PubMed
  26. AMB Express. 2012 Nov 19;2(1):59 - PubMed
  27. Bioresour Technol. 2013 Jan;128:745-50 - PubMed
  28. Appl Microbiol Biotechnol. 2013 Feb;97(4):1407-24 - PubMed
  29. J Bacteriol. 1990 May;172(5):2791-2 - PubMed
  30. Bioresour Technol. 2013 Sep;144:255-60 - PubMed
  31. Photosynth Res. 2013 Nov;118(1-2):37-49 - PubMed
  32. J Appl Microbiol. 2014 Apr;116(4):830-8 - PubMed
  33. Bioresour Technol. 2014 Apr;158:174-80 - PubMed
  34. Biotechnol Biofuels. 2014 May 12;7:69 - PubMed
  35. Metabolites. 2013 Feb 06;3(1):101-18 - PubMed
  36. Biotechnol Biofuels. 2014 Jun 11;7:88 - PubMed
  37. Water Res. 2014 Nov 1;64:278-287 - PubMed
  38. Water Res. 2014 Nov 15;65:186-202 - PubMed
  39. J Biosci Bioeng. 2015 Aug;120(2):128-34 - PubMed
  40. Biomed Res Int. 2015;2015:967814 - PubMed
  41. Appl Environ Microbiol. 2015 Jul;81(13):4411-22 - PubMed
  42. Front Microbiol. 2015 Jun 22;6:597 - PubMed
  43. Appl Microbiol Biotechnol. 2016 Feb;100(3):1333-1341 - PubMed
  44. J Appl Phycol. 2016;28(1):53-62 - PubMed
  45. Trends Biotechnol. 2016 Jun;34(6):450-457 - PubMed
  46. Bioresour Technol. 2016 Jul;212:342-347 - PubMed
  47. Bioresour Technol. 2016 Aug;214:761-768 - PubMed
  48. Arch Toxicol. 2016 Aug;90(8):1817-40 - PubMed
  49. PLoS One. 2016 Jun 30;11(6):e0158168 - PubMed
  50. Front Microbiol. 2016 Jun 21;7:966 - PubMed
  51. J Struct Biol. 2016 Dec;196(3):385-393 - PubMed
  52. Curr Biol. 2016 Nov 7;26(21):2862-2872 - PubMed
  53. J Biotechnol. 2016 Dec 20;240:61-67 - PubMed
  54. N Biotechnol. 2017 May 25;36:8-16 - PubMed
  55. Biosci Rep. 1988 Dec;8(6):537-47 - PubMed
  56. Annu Rev Microbiol. 1977;31:225-74 - PubMed
  57. Arch Mikrobiol. 1969;69(2):114-20 - PubMed
  58. Appl Environ Microbiol. 1982 Jul;44(1):238-41 - PubMed
  59. J Bacteriol. 1982 Jan;149(1):361-3 - PubMed
  60. DNA Res. 1996 Jun 30;3(3):109-36 - PubMed
  61. Arch Microbiol. 1998 Sep;170(3):162-70 - PubMed
  62. Microbiology. 1998 Sep;144 ( Pt 9):2449-58 - PubMed

Publication Types