Display options
Share it on

Sci Rep. 2017 Sep 11;7(1):11159. doi: 10.1038/s41598-017-11547-9.

Laser-Induced Linear-Field Particle Acceleration in Free Space.

Scientific reports

Liang Jie Wong, Kyung-Han Hong, Sergio Carbajo, Arya Fallahi, Philippe Piot, Marin Soljačić, John D Joannopoulos, Franz X Kärtner, Ido Kaminer

Affiliations

  1. Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA. [email protected].
  2. Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Innovis, 138634, Singapore. [email protected].
  3. Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA.
  4. Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
  5. Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, D-22607, Hamburg, Germany.
  6. Department of Physics and Northern Illinois Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL, 60115, USA.
  7. Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA.
  8. Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA.
  9. Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22607, Hamburg, Germany.
  10. Department of Electrical Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.

PMID: 28894271 PMCID: PMC5593863 DOI: 10.1038/s41598-017-11547-9

Abstract

Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computational experiment. The formalism includes exact treatment of Maxwell's equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the field amplitude. For example, 30 keV electrons (2.5% energy spread) are accelerated to 61 MeV (0.5% spread) and to 205 MeV (0.25% spread) using 250 mJ and 2.5 J lasers respectively. These findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.

References

  1. Nature. 2004 Sep 30;431(7008):535-8 - PubMed
  2. Opt Express. 2010 Oct 11;18(21):22128-40 - PubMed
  3. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10558-63 - PubMed
  4. Opt Lett. 2004 Dec 15;29(24):2837-9 - PubMed
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 2):066501 - PubMed
  6. Opt Lett. 2014 Apr 15;39(8):2487-90 - PubMed
  7. Nature. 2004 Sep 30;431(7008):538-41 - PubMed
  8. Nature. 2015 May 14;521(7551):200-3 - PubMed
  9. Nature. 2013 Nov 7;503(7474):91-4 - PubMed
  10. Opt Lett. 2012 Jul 1;37(13):2442-4 - PubMed
  11. Nature. 2004 Sep 30;431(7008):541-4 - PubMed
  12. Opt Express. 2010 Aug 16;18(17):17865-75 - PubMed
  13. Phys Rev Lett. 2005 Sep 23;95(13):134801 - PubMed
  14. Sci Rep. 2017 Jul 12;7(1):5224 - PubMed
  15. Phys Rev Lett. 2001 Apr 30;86(18):4041-3 - PubMed
  16. Phys Rev Lett. 2013 Nov 27;111(22):224801 - PubMed
  17. Phys Rev Lett. 2013 Sep 27;111(13):134803 - PubMed
  18. Opt Express. 2010 Nov 22;18(24):25035-51 - PubMed
  19. Phys Rev Lett. 2008 Apr 18;100(15):155004 - PubMed
  20. Phys Rev Lett. 2004 Aug 27;93(9):094802 - PubMed
  21. Phys Rev Lett. 2009 Mar 27;102(12):124801 - PubMed
  22. Nat Commun. 2014 Sep 15;5:4928 - PubMed
  23. Phys Rev Lett. 1995 Jan 23;74(4):546-549 - PubMed
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016501 - PubMed
  25. Phys Rev Lett. 2016 Sep 16;117(12):124801 - PubMed
  26. Opt Lett. 2013 Mar 1;38(5):796-8 - PubMed
  27. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):4833-4843 - PubMed
  28. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Nov;52(5):5443-5453 - PubMed
  29. Phys Rev Lett. 2003 Dec 5;91(23):233901 - PubMed
  30. Phys Rev Lett. 2006 Feb 24;96(7):077401 - PubMed
  31. Opt Lett. 2013 Mar 15;38(6):821-3 - PubMed

Publication Types