Display options
Share it on

Ecol Evol. 2017 Jun 15;7(15):5754-5765. doi: 10.1002/ece3.3154. eCollection 2017 Aug.

Substantial variation in the timing of pollen production reduces reproductive synchrony between distant populations of .

Ecology and evolution

Richard Whittet, Stephen Cavers, Joan Cottrell, Cristina Rosique-Esplugas, Richard Ennos

Affiliations

  1. Institute of Evolutionary Biology University of Edinburgh Edinburgh UK.
  2. NERC Centre for Ecology and Hydrology Penicuik UK.
  3. Forest Research Northern Research Station Roslin UK.

PMID: 28894569 PMCID: PMC5586338 DOI: 10.1002/ece3.3154

Abstract

The ability of a population to genetically adapt to a changing environment is contingent not only on the level of existing genetic variation within that population, but also on the gene flow received from differently adapted populations. Effective pollen-mediated gene flow among plant populations requires synchrony of flowering. Therefore differences in timing of flowering among genetically divergent populations may reduce their ability to adapt to environmental change. To determine whether gene flow among differently adapted populations of native Scots pine (

Keywords: Pinus sylvestris; Scotland; assortative mating; countergradient variation; cumulative link model; flowering phenology; functional connectivity; gene flow; pollen; reproductive synchrony

References

  1. Ecol Lett. 2005 May;8(5):461-7 - PubMed
  2. Heredity (Edinb). 1999 Apr;82 Pt 4:441-50 - PubMed
  3. Proc Biol Sci. 1998 Sep 22;265(1407):1697-705 - PubMed
  4. Evol Appl. 2016 Jul 18;9(8):982-93 - PubMed
  5. Science. 2001 Apr 27;292(5517):673-9 - PubMed
  6. Plant Pathol. 2016 Aug;65(6):987-996 - PubMed
  7. Conserv Biol. 2013 Apr;27(2):373-84 - PubMed
  8. Heredity (Edinb). 2011 May;106(5):775-87 - PubMed
  9. Trends Ecol Evol. 1995 Jun;10(6):248-52 - PubMed
  10. Mol Ecol. 2012 Apr;21(7):1548-66 - PubMed
  11. Heredity (Edinb). 2014 Dec;113(6):485-94 - PubMed
  12. Mol Ecol. 2014 Nov;23(22):5435-47 - PubMed
  13. Heredity (Edinb). 2005 Jan;94(1):13-22 - PubMed
  14. New Phytol. 2011 Apr;190(1):222-33 - PubMed
  15. Glob Chang Biol. 2013 Jun;19(6):1645-61 - PubMed
  16. Evol Appl. 2008 Feb;1(1):95-111 - PubMed
  17. Tree Physiol. 1995 Jul-Aug;15(7_8):515-518 - PubMed
  18. Evol Appl. 2015 Aug 24;9(1):271-90 - PubMed
  19. Ecol Lett. 2012 Apr;15(4):378-92 - PubMed
  20. BMC Evol Biol. 2012 Jun 08;12:79 - PubMed
  21. Mol Ecol. 2004 Feb;13(2):277-90 - PubMed
  22. Am Nat. 2015 Jul;186(1):84-97 - PubMed
  23. Ecol Evol. 2017 Jun 15;7(15):5754-5765 - PubMed
  24. Heredity (Edinb). 2014 Jun;112(6):596-606 - PubMed

Publication Types