Display options
Share it on

Intensive Care Med Exp. 2017 Sep 11;5(1):42. doi: 10.1186/s40635-017-0158-x.

Fluid loading and norepinephrine infusion mask the left ventricular preload decrease induced by pleural effusion.

Intensive care medicine experimental

Kristian Borup Wemmelund, Viktor Kromann Ringgård, Simon Tilma Vistisen, Janus Adler Hyldebrandt, Erik Sloth, Peter Juhl-Olsen

Affiliations

  1. Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark. [email protected].
  2. Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark. [email protected].
  3. Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
  4. Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
  5. Research Centre of Emergency Medicine, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark.
  6. Division of Medicine, Akershus University Hospital, Lørenskog, Norway.
  7. University of Cape Town, Cape Town, South Africa.

PMID: 28895094 PMCID: PMC5593801 DOI: 10.1186/s40635-017-0158-x

Abstract

BACKGROUND: Pleural effusion (PLE) may lead to low blood pressure and reduced cardiac output. Low blood pressure and reduced cardiac output are often treated with fluid loading and vasopressors. This study aimed to determine the impact of fluid loading and norepinephrine infusion on physiologic determinants of cardiac function obtained by ultrasonography during PLE.

METHODS: In this randomised, blinded, controlled laboratory study, 30 piglets (21.9 ± 1.3 kg) had bilateral PLE (75 mL/kg) induced. Subsequently, the piglets were randomised to intervention as follows: fluid loading (80 mL/kg/h for 1.5 h, n = 12), norepinephrine infusion (0.01, 0.03, 0.05, 0.1, 0.2 and 0.3 μg/kg/min (15 min each, n = 12)) or control (n = 6). Main outcome was left ventricular preload measured as left ventricular end-diastolic area. Secondary endpoints included contractility and afterload as well as global measures of circulation. All endpoints were assessed with echocardiography and invasive pressure-flow measurements.

RESULTS: PLE decreased left ventricular end-diastolic area, mean arterial pressure and cardiac output (p values < 0.001), but fluid loading (20 mL/kg) and norepinephrine infusion (0.05 μg/kg/min) restored these values (p values > 0.05) to baseline. Left ventricular contractility increased with norepinephrine infusion (p = 0.002), but was not affected by fluid loading (p = 0.903). Afterload increased in both active groups (p values > 0.001). Overall, inferior vena cava distensibility remained unchanged during intervention (p values ≥ 0.085). Evacuation of PLE caused numerical increases in left ventricular end-diastolic area, but only significantly so in controls (p = 0.006).

CONCLUSIONS: PLE significantly reduced left ventricular preload. Both fluid and norepinephrine treatment reverted this effect and normalised global haemodynamic parameters. Inferior vena cava distensibility remained unchanged. The haemodynamic significance of PLE may be underestimated during fluid or norepinephrine administration, potentially masking the presence of PLE.

Keywords: Animal models; Fluid therapy; Norepinephrine; Pleural effusion; Thoracentesis; Ventricular function

References

  1. Ann Intensive Care. 2014 Jun 21;4:21 - PubMed
  2. J Cardiothorac Vasc Anesth. 2014 Aug;28(4):885-9 - PubMed
  3. Intensive Care Med. 2004 Sep;30(9):1834-7 - PubMed
  4. Intensive Care Med. 2004 Sep;30(9):1740-6 - PubMed
  5. J Appl Physiol (1985). 1985 Nov;59(5):1458-63 - PubMed
  6. Intensive Care Med. 1997 May;23(5):493-503 - PubMed
  7. Acta Anaesthesiol Scand. 2014 Aug;58(7):807-14 - PubMed
  8. Crit Care Med. 1999 Mar;27(3):583-7 - PubMed
  9. Lancet. 1986 Feb 8;1(8476):307-10 - PubMed
  10. J Cardiothorac Vasc Anesth. 2007 Oct;21(5):650-4 - PubMed
  11. Adv Physiol Educ. 2001 Dec;25(1-4):53-61 - PubMed
  12. Acta Anaesthesiol Scand. 2012 Aug;56(7):833-9 - PubMed
  13. Crit Care Med. 2011 Apr;39(4):689-94 - PubMed
  14. Intensive Care Med. 2003 Mar;29(3):352-60 - PubMed
  15. Am J Respir Crit Care Med. 2000 Jul;162(1):134-8 - PubMed
  16. Eur J Anaesthesiol. 2017 May;34(5):262-270 - PubMed
  17. ILAR J. 1997;38(1):41-48 - PubMed
  18. Am J Respir Crit Care Med. 2002 Dec 15;166(12 Pt 1):1567-71 - PubMed
  19. Chest. 1997 Apr;111(4):1018-23 - PubMed
  20. Nat Rev Nephrol. 2010 Feb;6(2):107-15 - PubMed
  21. Surgery. 1998 Feb;123(2):137-43 - PubMed
  22. Circulation. 1997 Dec 16;96(12):4415-23 - PubMed
  23. Environ Health Perspect. 1978 Oct;26:151-8 - PubMed
  24. N Engl J Med. 2013 Oct 31;369(18):1726-34 - PubMed
  25. J Emerg Med. 2012 May;42(5):600-5 - PubMed
  26. Circulation. 1992 Aug;86(2):609-17 - PubMed
  27. Acta Anaesthesiol Scand. 2003 Jul;47(6):693-701 - PubMed
  28. Acta Anaesthesiol Scand. 2010 Feb;54(2):199-205 - PubMed
  29. Intensive Care Med. 2002 Dec;28(12):1804-9 - PubMed
  30. PLoS One. 2013;8(2):e56267 - PubMed

Publication Types