Display options
Share it on

ACS Appl Mater Interfaces. 2017 Oct 11;9(40):35305-35318. doi: 10.1021/acsami.7b09009. Epub 2017 Sep 25.

Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study.

ACS applied materials & interfaces

Assya Boujemaoui, Carmen Cobo Sanchez, Joakim Engström, Carl Bruce, Linda Fogelström, Anna Carlmark, Eva Malmström

Affiliations

  1. Division of Coating Technology and ‡Wallenberg Wood Science Center, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden.

PMID: 28895728 DOI: 10.1021/acsami.7b09009

Abstract

In the present work, cellulose nanocrystals (CNCs) have been surface-modified either via covalent grafting or through physisorption of poly(n-butyl methacrylate) (PBMA) and employed as reinforcement in PCL. Covalent grafting was achieved by surface-initiated atom transfer radical polymerization (SI-ATRP). Two approaches were utilized for the physisorption: using either micelles of poly(dimethyl aminoethyl methacrylate)-block-poly(n-butyl methacrylate) (PDMAEMA-b-PBMA) or latex nanoparticles of poly(dimethyl aminoethyl methacrylate-co-methacrylic acid)-block-poly(n-butyl methacrylate) (P(DMAEMA-co-MAA)-b-PBMA). Block copolymers (PDMAEMA-b-PBMA)s were obtained by ATRP and subsequently micellized. Latex nanoparticles were produced via reversible addition-fragmentation chain-transfer (RAFT) mediated surfactant-free emulsion polymerization, employing polymer-induced self-assembly (PISA) for the particle formation. For a reliable comparison, the amounts of micelles/latex particles adsorbed and the amount of polymer grafted onto the CNCs were kept similar. Two different chain lengths of PBMA were targeted, below and above the critical molecular weight for chain entanglement of PBMA (M

Keywords: cellulose nanocrystals (CNCs); covalent grafting; nanocomposites; physisorption; poly(ε-caprolactone) (PCL); reversible-deactivation radical polymerization (RDRP)

Publication Types