Display options
Share it on

Front Mol Neurosci. 2017 Sep 13;10:279. doi: 10.3389/fnmol.2017.00279. eCollection 2017.

Dysregulation of Alternative Poly-adenylation as a Potential Player in Autism Spectrum Disorder.

Frontiers in molecular neuroscience

Krzysztof J Szkop, Peter I C Cooke, Joanne A Humphries, Viktoria Kalna, David S Moss, Eugene F Schuster, Irene Nobeli

Affiliations

  1. Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom.
  2. The Institute of Cancer ResearchLondon, United Kingdom.

PMID: 28955198 PMCID: PMC5601403 DOI: 10.3389/fnmol.2017.00279

Abstract

We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3' untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3' UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3' sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled

Keywords: RNA–seq; alternative poly-adenylation; autism spectrum disorder; calcium signaling; transcription

References

  1. JAMA. 2010 Dec 1;304(21):2389-96 - PubMed
  2. Transl Psychiatry. 2015 Sep 22;5:e643 - PubMed
  3. Neurology. 2001 Jun 12;56(11):1486-95 - PubMed
  4. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  5. Science. 2008 Jun 20;320(5883):1643-7 - PubMed
  6. Database (Oxford). 2014 Jul 22;2014:null - PubMed
  7. Genome Res. 2013 Oct;23(10):1690-703 - PubMed
  8. Curr Opin Neurobiol. 2007 Feb;17(1):112-9 - PubMed
  9. Mol Syst Biol. 2014 Dec 30;10:774 - PubMed
  10. PLoS Genet. 2016 Feb 23;12(2):e1005879 - PubMed
  11. Nucleic Acids Res. 2005 Jan 12;33(1):201-12 - PubMed
  12. Genes Dev. 2013 Mar 1;27(5):485-90 - PubMed
  13. BMC Genomics. 2013 Dec 23;14:912 - PubMed
  14. J Mol Cell Biol. 2012 Dec;4(6):352-61 - PubMed
  15. Mol Autism. 2013 Oct 03;4(1):36 - PubMed
  16. Hum Mol Genet. 1999 Jul;8(7):1253-62 - PubMed
  17. Am J Med Genet B Neuropsychiatr Genet. 2007 Jun 5;144B(4):475-83 - PubMed
  18. Nature. 2015 Jun 18;522(7556):363-7 - PubMed
  19. Bioinformatics. 2013 Jul 15;29(14):1713-7 - PubMed
  20. J Mol Med (Berl). 2003 Jan;81(1):61-8 - PubMed
  21. Cell Rep. 2016 Apr 12;15(2):423-35 - PubMed
  22. Am J Med Genet B Neuropsychiatr Genet. 2004 Jul 1;128B(1):50-3 - PubMed
  23. Bioinformatics. 2009 Nov 15;25(22):3005-11 - PubMed
  24. BMC Genomics. 2013 Dec 17;14:892 - PubMed
  25. Nat Med. 2008 Aug;14(8):843-8 - PubMed
  26. Int J Dev Neurosci. 2014 Aug;36:13-8 - PubMed
  27. Mol Cell. 2009 Oct 23;36(2):245-54 - PubMed
  28. Mol Autism. 2012 Oct 15;3(1):9 - PubMed
  29. Genome Biol. 2013 Apr 25;14(4):R36 - PubMed
  30. Front Endocrinol (Lausanne). 2013 May 08;4:53 - PubMed
  31. Dev Biol. 2016 Dec 15;420(2):199-209 - PubMed
  32. Cell. 2005 Jan 14;120(1):15-20 - PubMed
  33. Mol Autism. 2013 Nov 15;4(1):45 - PubMed
  34. Genome Res. 2002 Jun;12(6):996-1006 - PubMed
  35. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12698-703 - PubMed
  36. RNA. 2016 Sep;22(9):1441-53 - PubMed
  37. EMBO J. 2011 May 20;30(12):2431-44 - PubMed
  38. Genome Biol. 2007;8(8):R159 - PubMed
  39. Genes Dev. 2014 Dec 1;28(23):2663-76 - PubMed
  40. Nat Commun. 2014 Dec 10;5:5748 - PubMed
  41. Dis Markers. 2012;33(5):225-39 - PubMed
  42. Sci Rep. 2017 Feb 01;7:40740 - PubMed
  43. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  44. RNA. 2011 Apr;17(4):761-72 - PubMed
  45. Cell. 2014 Dec 18;159(7):1511-23 - PubMed
  46. Cell. 2012 Apr 27;149(3):538-53 - PubMed
  47. Neuroscience. 2004;126(3):665-76 - PubMed
  48. Nat Genet. 2003 Jul;34(3):267-73 - PubMed
  49. Nat Neurosci. 2011 Jan;14(1):19-21 - PubMed
  50. Mol Psychiatry. 2010 Jan;15(1):38-52 - PubMed
  51. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 - PubMed
  52. PLoS One. 2008;3(11):e3815 - PubMed
  53. Nucleic Acids Res. 2013 Mar 1;41(5):3104-14 - PubMed
  54. Trends Genet. 2000 Jun;16(6):276-7 - PubMed
  55. Neurogenetics. 2015 Apr;16(2):107-22 - PubMed
  56. Nature. 2009 Oct 8;461(7265):814-8 - PubMed
  57. Dialogues Clin Neurosci. 2012 Sep;14(3):293-305 - PubMed
  58. Neurosignals. 2010;18(2):98-112 - PubMed
  59. Nucleic Acids Res. 2011 Mar;39(6):2393-403 - PubMed
  60. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  61. Nat Rev Neurol. 2017 May;13(5):265-278 - PubMed
  62. Nature. 2013 Jan 17;493(7432):327-37 - PubMed
  63. Mol Syst Biol. 2014 Feb 25;10:719 - PubMed
  64. Nat Rev Genet. 2013 Jul;14(7):496-506 - PubMed
  65. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7028-33 - PubMed
  66. Wiley Interdiscip Rev RNA. 2010 Nov-Dec;1(3):494-501 - PubMed
  67. Genome Res. 2011 Sep;21(9):1478-86 - PubMed
  68. Biomolecules. 2015 Jun 08;5(2):1151-68 - PubMed
  69. Nat Neurosci. 2015 Feb;18(2):191-8 - PubMed
  70. PLoS One. 2014 Apr 10;9(4):e94270 - PubMed
  71. Cell. 2010 Dec 10;143(6):1018-29 - PubMed
  72. Nucleic Acids Res. 2012 Nov;40(21):10679-88 - PubMed
  73. Genes Dev. 2013 Nov 1;27(21):2380-96 - PubMed
  74. Nucleic Acids Res. 2010 Jan;38(Database issue):D75-80 - PubMed
  75. Front Cell Neurosci. 2014 Mar 06;8:70 - PubMed
  76. Genom Data. 2015 Jul 10;5:394-6 - PubMed
  77. Cytoskeleton (Hoboken). 2012 Aug;69(8):545-54 - PubMed
  78. Environ Int. 2017 Feb;99:107-119 - PubMed
  79. Mol Autism. 2012 Dec 15;3(1):18 - PubMed
  80. Bioinformatics. 2012 Aug 15;28(16):2184-5 - PubMed
  81. Neuron. 2008 Dec 26;60(6):1022-38 - PubMed
  82. Bioinformatics. 2011 Jun 15;27(12):1653-9 - PubMed
  83. Genome Res. 2013 May;23(5):812-25 - PubMed
  84. Nature. 2011 May 25;474(7351):380-4 - PubMed
  85. Neuron. 2011 Jun 9;70(5):898-907 - PubMed
  86. Adv Anat Embryol Cell Biol. 2017;224:49-64 - PubMed
  87. Genome Res. 2012 Jun;22(6):1173-83 - PubMed
  88. Nature. 2014 Jun 19;510(7505):412-6 - PubMed
  89. Cell. 2004 Oct 1;119(1):19-31 - PubMed
  90. Nat Protoc. 2009;4(1):44-57 - PubMed
  91. RNA Biol. 2010 May-Jun;7(3):361-72 - PubMed
  92. Sci Rep. 2013;3:2054 - PubMed
  93. Clin Cancer Res. 2012 Oct 1;18(19):5256-66 - PubMed
  94. Biochem Biophys Res Commun. 2007 Jan 5;352(1):226-30 - PubMed
  95. Cell. 2011 Sep 30;147(1):235-46 - PubMed
  96. Curr Biol. 1996 Dec 1;6(12):1642-52 - PubMed
  97. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W361-7 - PubMed
  98. Mol Syst Biol. 2011 Sep 27;7:534 - PubMed
  99. FEBS Lett. 2013 Jan 16;587(2):245-53 - PubMed
  100. Genome Biol. 2010;11(2):R14 - PubMed
  101. Elife. 2016 Oct 25;5:null - PubMed
  102. Nucleic Acids Res. 2011 Aug;39(14):6172-85 - PubMed
  103. Nat Commun. 2014 Nov 20;5:5274 - PubMed
  104. Science. 2015 May 8;348(6235):648-60 - PubMed

Publication Types