Display options
Share it on

Front Vet Sci. 2017 Sep 12;4:149. doi: 10.3389/fvets.2017.00149. eCollection 2017.

Analysis of Contractility and Invasion Potential of Two Canine Mammary Tumor Cell Lines.

Frontiers in veterinary science

Kaisa Rajakylä, Ramaswamy Krishnan, Sari Tojkander

Affiliations

  1. Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, Helsinki, Finland.
  2. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.

PMID: 28955712 PMCID: PMC5600937 DOI: 10.3389/fvets.2017.00149

Abstract

Cancer cells are surrounded by a mechanically and biochemically distinct microenvironment that undergoes dynamic changes throughout the neoplastic progression. During this progression, some cancer cells acquire abnormal characteristics that potentiate their escape from the primary tumor site, to establish secondary tumors in distant organs. Recent studies with several human cancer cell lines have shown that the altered physical properties of tumor cells, such as their ability to apply high traction forces to the surroundings, are directly linked with their potential to invade and metastasize. To test the hypothetical interconnection between actomyosin-mediated traction forces and invasion potential within 3D-microenvironment, we utilized two canine mammary tumor cell lines with different contractile properties. These cell lines, canine mammary tumor (CMT)-U27 and CMT-U309, were found to have distinct expression patterns of lineage-specific markers and organization of actin-based structures. In particular, CMT-U309 carcinoma cells were typified by thick contractile actomyosin bundles that exerted high forces to their environment, as measured by traction force microscopy. These high contractile forces also correlated with the prominent invasiveness of the CMT-U309 cell line. Furthermore, we found high contractility and 3D-invasion potential to be dependent on the activity of 5'AMP-activated protein kinase (AMPK), as blocking AMPK signaling was found to reverse both of these features. Taken together, our findings implicate that actomyosin forces correlate with the invasion potential of the studied cell lines.

Keywords: AMP-activated protein kinase; actin cytoskeleton; actomyosin forces; breast cancer; canine mammary tumor; contractility; invasion; traction force imaging

References

  1. Vet Pathol. 2006 Jul;43(4):424-9 - PubMed
  2. Vet Pathol. 2014 Jan;51(1):127-45 - PubMed
  3. Clujul Med. 2016;89(1):38-49 - PubMed
  4. Nat Rev Mol Cell Biol. 2015 Aug;16(8):486-98 - PubMed
  5. J Physiol. 2006 Jul 1;574(Pt 1):17-31 - PubMed
  6. Mod Pathol. 2006 Feb;19(2):264-71 - PubMed
  7. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4708-13 - PubMed
  8. Biosci Rep. 2015 Sep 15;35(5):null - PubMed
  9. Vet J. 2010 Apr;184(1):45-51 - PubMed
  10. J Cell Biol. 2006 May 8;173(3):383-94 - PubMed
  11. Cancer Epidemiol Biomarkers Prev. 2007 Nov;16(11):2247-56 - PubMed
  12. Cell. 2009 Nov 25;139(5):871-90 - PubMed
  13. Am J Surg Pathol. 2006 Mar;30(3):300-9 - PubMed
  14. J Mammary Gland Biol Neoplasia. 2007 Sep;12(2-3):127-33 - PubMed
  15. PLoS One. 2009;4(5):e5486 - PubMed
  16. J Small Anim Pract. 2000 Jul;41(7):287-91 - PubMed
  17. Biochem J. 2006 Mar 1;394(Pt 2):449-57 - PubMed
  18. Nat Rev Cancer. 2009 Feb;9(2):108-22 - PubMed
  19. Vet Pathol. 2008 Nov;45(6):803-15 - PubMed
  20. Am J Pathol. 1974 Apr;75(1):225-8 - PubMed
  21. J Comp Pathol. 1989 Nov;101(4):389-97 - PubMed
  22. In Vitro Cell Dev Biol. 1992 May;28A(5):309-19 - PubMed
  23. Cytoskeleton (Hoboken). 2013 Apr;70(4):201-14 - PubMed
  24. Cancer Invest. 2000;18(8):781-92 - PubMed
  25. J Comp Pathol. 2014 Aug-Oct;151(2-3):166-80 - PubMed
  26. Mol Med Today. 1997 Jan;3(1):8-11 - PubMed
  27. Bioarchitecture. 2012 May 1;2(3):75-87 - PubMed
  28. Science. 2009 Nov 27;326(5957):1208-12 - PubMed
  29. Vet Pathol. 2011 Jan;48(1):117-31 - PubMed
  30. Vet Pathol. 1992 Mar;29(2):179-81 - PubMed
  31. Acta Biomater. 2014 May;10 (5):1886-96 - PubMed
  32. Am J Surg Pathol. 2004 Nov;28(11):1506-12 - PubMed
  33. Breast Cancer Res Treat. 2000 Jun;61(3):197-210 - PubMed
  34. Am J Physiol Cell Physiol. 2002 Oct;283(4):C1254-66 - PubMed
  35. Cell Prolif. 2003 Oct;36 Suppl 1:73-84 - PubMed
  36. Eur J Cell Biol. 2008 Sep;87(8-9):669-76 - PubMed
  37. Jpn J Clin Oncol. 1997 Feb;27(1):46-50 - PubMed
  38. Apoptosis. 2015 Jun;20(6):821-30 - PubMed
  39. Elife. 2015 Dec 10;4:e06126 - PubMed
  40. Transl Res. 2012 Mar;159(3):165-72 - PubMed
  41. Cancer Metastasis Rev. 1990 Sep;9(2):125-36 - PubMed
  42. J Pathol. 2004 Jun;203(2):661-71 - PubMed
  43. Biochim Biophys Acta. 2007 May;1773(5):642-52 - PubMed
  44. Vet Q. 1993 Sep;15(3):102-7 - PubMed
  45. J Cell Sci. 2012 Apr 15;125(Pt 8):1855-64 - PubMed
  46. IUBMB Life. 2013 Nov;65(11):889-96 - PubMed
  47. Invest Cell Pathol. 1979 Oct-Dec;2(4):257-75 - PubMed
  48. Oncogene. 2003 Sep 18;22(40):6194-203 - PubMed
  49. Breast Cancer Res. 2010;12(5):R68 - PubMed
  50. J Cell Sci. 2011 Feb 1;124(Pt 3):369-83 - PubMed
  51. PLoS One. 2012;7(2):e32572 - PubMed
  52. J Cell Sci. 2005 Mar 1;118(Pt 5):873-87 - PubMed
  53. Cell. 2012 Mar 2;148(5):1015-28 - PubMed
  54. Cancers (Basel). 2010 May 28;2(2):1040-65 - PubMed
  55. Am J Surg. 2016 Apr;211(4):716-21 - PubMed
  56. Cell Adh Migr. 2014;8(6):578-87 - PubMed
  57. CA Cancer J Clin. 2007 Jan-Feb;57(1):43-66 - PubMed
  58. Biophys J. 2014 Dec 2;107(11):2528-37 - PubMed

Publication Types