Display options
Share it on

Genes (Basel). 2017 Oct 20;8(10). doi: 10.3390/genes8100283.

Allelic Expression Imbalance in the Human Retinal Transcriptome and Potential Impact on Inherited Retinal Diseases.

Genes

Pablo Llavona, Michele Pinelli, Margherita Mutarelli, Veer Singh Marwah, Simone Schimpf-Linzenbold, Sebastian Thaler, Efdal Yoeruek, Jan Vetter, Susanne Kohl, Bernd Wissinger

Affiliations

  1. Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany. [email protected].
  2. Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy. [email protected].
  3. Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy. [email protected].
  4. Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy. [email protected].
  5. Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland. [email protected].
  6. Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany. [email protected].
  7. Center for Ophthalmology, 72076 Tuebingen, Germany. [email protected].
  8. Center for Ophthalmology, 72076 Tuebingen, Germany. [email protected].
  9. Augenklinik Mülheim, 45468 Mülheim an der Ruhr, Germany. [email protected].
  10. Universitäts-Augenklinik, 55131 Mainz, Germany. [email protected].
  11. Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany. [email protected].
  12. Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany. [email protected].

PMID: 29053642 PMCID: PMC5664133 DOI: 10.3390/genes8100283

Abstract

Inherited retinal diseases (IRDs) are often associated with variable clinical expressivity (VE) and incomplete penetrance (IP). Underlying mechanisms may include environmental, epigenetic, and genetic factors.

Keywords: Inherited retinal diseases; allelic expression imbalance; expressivity; penetrance; retina

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Nat Rev Genet. 2015 Apr;16(4):197-212 - PubMed
  2. Cell. 2013 Mar 14;152(6):1308-23 - PubMed
  3. Sci Rep. 2016 Jan 19;6:19450 - PubMed
  4. Mol Vis. 2012;18:2736-48 - PubMed
  5. BMC Bioinformatics. 2012 Jun 18;13:134 - PubMed
  6. Am J Ophthalmol. 2016 Sep;169:24-32 - PubMed
  7. Genome Med. 2015 Jun 24;7(1):60 - PubMed
  8. PLoS One. 2014 Jan 31;9(1):e87942 - PubMed
  9. Genome Biol. 2015 Sep 17;16:195 - PubMed
  10. Nat Genet. 2016 Jan;48(1):22-9 - PubMed
  11. Nucleic Acids Res. 2016 Jul 8;44(12 ):5773-84 - PubMed
  12. BMC Genomics. 2015 Aug 01;16:566 - PubMed
  13. Nat Genet. 2010 Feb;42(2):175-80 - PubMed
  14. Hum Mutat. 2006 Jul;27(7):644-53 - PubMed
  15. Nat Methods. 2013 Dec;10(12):1185-91 - PubMed
  16. Sci Rep. 2016 Apr 01;6:23910 - PubMed
  17. Ophthalmology. 2005 Sep;112(9):1592-8 - PubMed
  18. Invest Ophthalmol Vis Sci. 2016 Feb;57(2):349-59 - PubMed
  19. Am J Hum Genet. 1999 Oct;65(4):974-83 - PubMed
  20. BMC Genomics. 2013 Aug 22;14:571 - PubMed
  21. Eye (Lond). 2011 Feb;25(2):208-17 - PubMed
  22. Nucleic Acids Res. 2007;35(5):e34 - PubMed
  23. Mol Genet Metab. 2014 Nov;113(3):230-5 - PubMed
  24. Nat Commun. 2017 Feb 27;8:14519 - PubMed
  25. Hum Mutat. 2012 Jan;33(1):73-80 - PubMed
  26. Transl Pediatr. 2015 Apr;4(2):139-63 - PubMed
  27. Nucleic Acids Res. 2016 Jan 4;44(D1):D877-81 - PubMed
  28. Eur J Hum Genet. 2011 Feb;19(2):131-7 - PubMed
  29. PLoS Genet. 2012;8(11):e1003040 - PubMed
  30. PLoS Genet. 2015 Dec 11;11(12 ):e1005723 - PubMed

Publication Types