Display options
Share it on

Chem Sci. 2017 Sep 01;8(9):6239-6246. doi: 10.1039/c7sc02062g. Epub 2017 Jul 12.

Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes.

Chemical science

Feng Chen, Basudev Sahoo, Carsten Kreyenschulte, Henrik Lund, Min Zeng, Lin He, Kathrin Junge, Matthias Beller

Affiliations

  1. Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein Straße 29a , Rostock , 18059 , Germany . Email: [email protected].
  2. State Key Laboratory for Oxo Synthesis and Selective Oxidation , Suzhou Research Institute of LICP , Chinese Academy of Sci-ences , Lanzhou 730000 , P. R. China.

PMID: 28989657 PMCID: PMC5628387 DOI: 10.1039/c7sc02062g

Abstract

Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.

References

  1. J Am Chem Soc. 2012 Oct 24;134(42):17592-8 - PubMed
  2. J Am Chem Soc. 2015 Feb 25;137(7):2688-94 - PubMed
  3. Chem Soc Rev. 2010 Jan;39(1):81-8 - PubMed
  4. Chem Rev. 2011 Nov 9;111(11):7157-259 - PubMed
  5. Chem Rev. 2015 Dec 9;115(23):12936-73 - PubMed
  6. ACS Appl Mater Interfaces. 2016 Dec 7;8(48):32875-32886 - PubMed
  7. Angew Chem Int Ed Engl. 2011 Apr 11;50(16):3803-6 - PubMed
  8. Chem Rev. 2012 Apr 11;112(4):2557-90 - PubMed
  9. J Am Chem Soc. 2016 Jul 20;138(28):8781-8 - PubMed
  10. Acc Chem Res. 2007 Dec;40(12):1357-66 - PubMed
  11. Org Biomol Chem. 2005 Dec 7;3(23):4171-5 - PubMed
  12. Nat Chem. 2013 Jun;5(6):537-43 - PubMed
  13. Nanoscale. 2015 Mar 19;7(13):5607-11 - PubMed
  14. Chem Rev. 2012 Aug 8;112(8):4469-506 - PubMed
  15. J Am Chem Soc. 2015 Apr 1;137(12):4151-7 - PubMed
  16. J Am Chem Soc. 2015 Aug 26;137(33):10652-8 - PubMed
  17. Chem Soc Rev. 2011 Jul;40(7):3703-27 - PubMed
  18. Chem Rev. 2015 Jul 8;115(13):6621-86 - PubMed
  19. Chem Soc Rev. 2017 Jan 3;46(1):72-101 - PubMed
  20. Science. 2013 Nov 29;342(6162):1073-6 - PubMed
  21. Angew Chem Int Ed Engl. 2016 Oct 4;55(41):12582-94 - PubMed
  22. Chem Commun (Camb). 2011 Mar 7;47(9):2583-5 - PubMed
  23. Nat Commun. 2016 Apr 26;7:11326 - PubMed
  24. Chem Commun (Camb). 2015 Oct 18;51(81):15015-8 - PubMed
  25. Chem Soc Rev. 2006 Mar;35(3):226-36 - PubMed
  26. Chem Soc Rev. 2017 Feb 6;46(3):816-854 - PubMed
  27. J Am Chem Soc. 2015 Dec 16;137(49):15478-85 - PubMed
  28. Chem Soc Rev. 2012 Mar 21;41(6):2498-518 - PubMed
  29. Angew Chem Int Ed Engl. 2015 Oct 26;54(44):12868-84 - PubMed
  30. Chimia (Aarau). 2015;69(6):348-52 - PubMed
  31. J Am Chem Soc. 2015 Sep 16;137(36):11718-24 - PubMed
  32. Chem Soc Rev. 2009 Jan;38(1):89-99 - PubMed
  33. Angew Chem Int Ed Engl. 2017 Jan 19;56(4):936-964 - PubMed

Publication Types