Display options
Share it on

Biomed Opt Express. 2017 Sep 22;8(10):4652-4662. doi: 10.1364/BOE.8.004652. eCollection 2017 Oct 01.

Optophysiology of cardiomyocytes: characterizing cellular motion with quantitative phase imaging.

Biomedical optics express

Christine Cordeiro, Oscar J Abilez, Georges Goetz, Tushar Gupta, Yan Zhuge, Olav Solgaard, Daniel Palanker

Affiliations

  1. Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  2. Division of Cardiovascular Medicine, Stanford University, Stanford, CA, 94305, USA.
  3. Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
  4. Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.
  5. Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA.
  6. Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA.
  7. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA.

PMID: 29082092 PMCID: PMC5654807 DOI: 10.1364/BOE.8.004652

Abstract

Quantitative phase imaging enables precise characterization of cellular shape and motion. Variation of cell volume in populations of cardiomyocytes can help distinguish their types, while changes in optical thickness during beating cycle identify contraction and relaxation periods and elucidate cell dynamics. Parameters such as characteristic cycle shape, beating frequency, duration and regularity can be used to classify stem-cell derived cardiomyocytes according to their health and, potentially, cell type. Unlike classical patch-clamp based electrophysiological characterization of cardiomyocytes, this interferometric approach enables rapid and non-destructive analysis of large populations of cells, with longitudinal follow-up, and applications to tissue regeneration, personalized medicine, and drug testing.

Keywords: (100.2960) Image analysis; (170.1530) Cell analysis; (180.3170) Interference microscopy

References

  1. Stem Cell Reports. 2014 Feb 06;2(2):163-70 - PubMed
  2. Acta Biomater. 2012 Nov;8(11):4130-8 - PubMed
  3. J Mol Cell Cardiol. 2014 Dec;77:178-91 - PubMed
  4. Acta Haematol. 1979;62(5-6):289-98 - PubMed
  5. Cytometry A. 2017 May;91(5):510-518 - PubMed
  6. Opt Lett. 2012 Mar 15;37(6):1094-6 - PubMed
  7. Nat Rev Cardiol. 2016 Jun;13(6):333-49 - PubMed
  8. PLoS One. 2013;8(2):e56930 - PubMed
  9. Circ Res. 2014 Jan 31;114(3):511-23 - PubMed
  10. Opt Express. 2014 Mar 10;22(5):5133-46 - PubMed
  11. Biomed Eng Online. 2014 Apr 07;13:39 - PubMed
  12. Cytometry A. 2017 May;91(5):482-493 - PubMed
  13. Stem Cell Reports. 2015 Apr 14;4(4):621-31 - PubMed
  14. Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13124-9 - PubMed
  15. Heart Rhythm. 2014 Oct;11(10 ):1808-1818 - PubMed
  16. Sci Rep. 2016 Oct 04;6:34257 - PubMed
  17. J Pharmacol Toxicol Methods. 2010 May-Jun;61(3):277-86 - PubMed
  18. J Biomed Opt. 2011 Mar;16(3):030506 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H2006-17 - PubMed
  20. Stem Cell Reports. 2015 Oct 13;5(4):582-96 - PubMed
  21. Stem Cells. 2016 Nov;34(11):2670-2680 - PubMed
  22. Opt Express. 2015 May 18;23(10):13333-47 - PubMed
  23. J Blood Transfus. 2012;2012:317632 - PubMed
  24. Cytometry A. 2017 May;91(5):470-481 - PubMed
  25. Circulation. 2013 Sep 10;128(11 Suppl 1):S3-13 - PubMed
  26. FEBS Open Bio. 2017 Sep 02;7(10 ):1527-1538 - PubMed
  27. Br J Pharmacol. 2012 Mar;165(5):1424-41 - PubMed
  28. Circ Res. 2012 Feb 17;110(4):609-23 - PubMed
  29. Tissue Eng Part C Methods. 2015 May;21(5):467-79 - PubMed
  30. Appl Opt. 2013 Jan 1;52(1):A97-101 - PubMed
  31. Biomed Opt Express. 2010 Aug 23;1(2):706-719 - PubMed
  32. Am J Physiol Cell Physiol. 2008 Aug;295(2):C538-44 - PubMed
  33. Nat Methods. 2014 Aug;11(8):855-60 - PubMed
  34. Front Mol Neurosci. 2013 Jul 17;6:18 - PubMed
  35. Heart Rhythm. 2016 Dec;13(12 ):2379-2387 - PubMed

Publication Types

Grant support