Display options
Share it on

Curr Genet Med Rep. 2016 Dec;4(4):207-212. doi: 10.1007/s40142-016-0103-4. Epub 2016 Sep 10.

Using Mendelian Randomization studies to Assess Causality and Identify New Therapeutic Targets in Cardiovascular Medicine.

Current genetic medicine reports

Wei Zhao, Jung-Jin Lee, Asif Rasheed, Danish Saleheen

Affiliations

  1. Department of Biostatistics and Epidemiology, University of Pennsylvania, USA.
  2. Center for Non-Communicable Diseases, Karachi, Pakistan.

PMID: 29082115 PMCID: PMC5658043 DOI: 10.1007/s40142-016-0103-4

Abstract

Integration of knowledge generated from genetic studies on intermediate biomarkers and CHD can provide a reliable approach to help assess causal pathways in coronary heart disease. Mendelian Randomization (MR) studies are a powerful tool to assess causal relevance of a range of pathways. These analyses use genetic variants as proxies for soluble biomarkers in association studies of disease risk. MR studies can provide unbiased estimates of causal effects and avoid distortions due to confounding factors arising later in life, because genetic variants are fixed at conception. MR studies have provided evidence pointing towards the likelihood of a causal relevance of a range of pathways in CHD, including LDL-C, triglycerides, lipoprotein (a), and interleukin-6 receptor. On the other hand, MR studies have refuted the causal relevance of a number of biomarkers, including C-reactive protein (CRP), fibrinogen, uric acid, LpPLA2 activity, and homocysteine. Carefully conducted MR studies should overcome the limitations that are inherent to other observational studies (e.g., residual confounding and reverse causality) to help assess causal relevance of a range of pathways in CHD.

Keywords: Mendelian Randomization; cardiovascular disease; causal inference; coronary heart disease; novel therapies; risk factors

Conflict of interest statement

Conflict of Interest Each of the authors declares that he has no conflict of interest.

References

  1. Int J Epidemiol. 2006 Aug;35(4):935-43 - PubMed
  2. Nat Genet. 2013 Nov;45(11):1345-52 - PubMed
  3. Ann Epidemiol. 2006 Sep;16(9):675-80 - PubMed
  4. Arterioscler Thromb Vasc Biol. 2003 Oct 1;23(10):1914-20 - PubMed
  5. N Engl J Med. 2015 Jan 15;372(3):295-6 - PubMed
  6. Lancet. 2012 Mar 31;379(9822):1214-24 - PubMed
  7. Stat Methods Med Res. 2017 Oct;26(5):2333-2355 - PubMed
  8. PLoS One. 2014 Oct 10;9(10):e108891 - PubMed
  9. PLoS Med. 2012 Feb;9(2):e1001177 - PubMed
  10. J Am Coll Cardiol. 2016 Feb 2;67(4):407-416 - PubMed
  11. N Engl J Med. 2007 Nov 22;357(21):2109-22 - PubMed
  12. Arterioscler Thromb Vasc Biol. 1999 Sep;19(9):2162-70 - PubMed
  13. N Engl J Med. 2012 Apr 12;366(15):1404-13 - PubMed
  14. J Am Coll Cardiol. 2012 Nov 13;60(20):2049-52 - PubMed
  15. Eur J Epidemiol. 2015 Jul;30(7):543-52 - PubMed
  16. Nat Genet. 2015 Oct;47(10 ):1121-1130 - PubMed
  17. N Engl J Med. 2012 Jan 5;366(1):20-33 - PubMed
  18. Nat Genet. 2013 Jan;45(1):25-33 - PubMed
  19. N Engl J Med. 2012 Nov 29;367(22):2089-99 - PubMed
  20. JAMA. 2009 Jul 22;302(4):412-23 - PubMed
  21. Lancet. 2012 Aug 11;380(9841):572-80 - PubMed
  22. BMJ. 2011 Feb 15;342:d548 - PubMed
  23. Eur J Epidemiol. 2012 Apr;27(4):267-79 - PubMed
  24. J Clin Invest. 1990 Apr;85(4):1234-41 - PubMed
  25. JAMA. 2009 Nov 11;302(18):1993-2000 - PubMed
  26. Am J Pathol. 2003 Sep;163(3):1201-13 - PubMed
  27. Circulation. 2014 Jan 21;129(3):399-410 - PubMed
  28. N Engl J Med. 2009 Dec 24;361(26):2518-28 - PubMed
  29. Nat Genet. 2011 Mar 06;43(4):339-44 - PubMed
  30. Lancet. 2005 Oct 8;366(9493):1267-78 - PubMed
  31. JAMA. 2009 Jul 1;302(1):37-48 - PubMed
  32. Nature. 2011 Sep 11;478(7367):103-9 - PubMed
  33. Int J Epidemiol. 2015 Apr;44(2):512-25 - PubMed
  34. Lancet. 2005 Dec 3;366(9501):1906-8 - PubMed
  35. Ann Intern Med. 2014 Mar 4;160(5):339-43 - PubMed
  36. Int J Epidemiol. 2003 Feb;32(1):1-22 - PubMed

Publication Types

Grant support