Display options
Share it on

Sci Rep. 2017 Oct 12;7(1):13048. doi: 10.1038/s41598-017-13244-z.

The equivalent internal orientation and position noise for contour integration.

Scientific reports

Alex S Baldwin, Minnie Fu, Reza Farivar, Robert F Hess

Affiliations

  1. McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada. [email protected].
  2. McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada.

PMID: 29026194 PMCID: PMC5638929 DOI: 10.1038/s41598-017-13244-z

Abstract

Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

References

  1. Vis Neurosci. 2003 Jan-Feb;20(1):51-64 - PubMed
  2. Nature. 1997 Dec 11;390(6660):602-4 - PubMed
  3. Vision Res. 1998 Mar;38(6):783-7 - PubMed
  4. J Vis. 2015;15(15):15 - PubMed
  5. Vision Res. 2016 Mar;120:74-92 - PubMed
  6. J Vis. 2012 Sep 29;12(10):null - PubMed
  7. Vision Res. 1993 Aug;33(12):1619-38 - PubMed
  8. Spat Vis. 1997;10(4):433-6 - PubMed
  9. Vision Res. 2005 Sep;45(19):2511-22 - PubMed
  10. Trends Neurosci. 1997 Mar;20(3):106-11 - PubMed
  11. Vision Res. 2011 Jan;51(1):65-73 - PubMed
  12. J Vis. 2010 Mar 25;10(3):8.1-14 - PubMed
  13. Vis Neurosci. 2003 Sep-Oct;20(5):567-75 - PubMed
  14. Vision Res. 2001 Mar;41(6):711-24 - PubMed
  15. J Vis. 2006 Feb 23;6(2):170-8 - PubMed
  16. Vision Res. 2000;40(8):951-72 - PubMed
  17. Cogn Psychol. 1991 Apr;23(2):141-221 - PubMed
  18. Vision Res. 2005 Nov;45(24):3027-49 - PubMed
  19. Trends Cogn Sci. 2015 Jun;19(6):322-8 - PubMed
  20. Vision Res. 2010 Feb 8;50(3):284-99 - PubMed
  21. J Vis. 2008 Aug 22;8(11):9.1-8 - PubMed
  22. J Opt Soc Am A Opt Image Sci Vis. 2001 May;18(5):1016-26 - PubMed
  23. Vision Res. 2005 May;45(11):1375-83 - PubMed
  24. Vision Res. 1993 May;33(7):993-9 - PubMed
  25. J Vis. 2015;15(9):24 - PubMed
  26. Perception. 1997;26(11):1459-79 - PubMed
  27. J Vis. 2008 Aug 13;8(7):23.1-19 - PubMed
  28. Vision Res. 2001 Dec;41(27):3775-82 - PubMed
  29. J Opt Soc Am A Opt Image Sci Vis. 1999 Mar;16(3):647-53 - PubMed
  30. J Vis. 2012 Jun 08;12(6):12 - PubMed
  31. Vision Res. 1993 Jan;33(2):173-93 - PubMed
  32. Vision Res. 2001 Jul;41(15):1915-30 - PubMed
  33. Nat Neurosci. 2004 Feb;7(2):178-83 - PubMed
  34. J Vis. 2004 Jun 01;4(6):476-87 - PubMed
  35. PLoS One. 2016 Mar 08;11(3):e0150942 - PubMed
  36. Psychol Rev. 2008 Jan;115(1):44-82 - PubMed
  37. J Vis. 2010 Jul 01;10(8):14 - PubMed
  38. Nature. 1973 Jan 12;241(5385):135-7 - PubMed
  39. J Vis. 2007 Oct 29;7(13):9.1-15 - PubMed
  40. Vision Res. 1998 Nov;38(22):3541-53 - PubMed
  41. J Neurosci. 1996 Nov 15;16(22):7376-89 - PubMed

Publication Types