Display options
Share it on

Nanomaterials (Basel). 2017 Nov 04;7(11). doi: 10.3390/nano7110369.

Multifaceted Biomedical Applications of Functional Graphene Nanomaterials to Coated Substrates, Patterned Arrays and Hybrid Scaffolds.

Nanomaterials (Basel, Switzerland)

Yong Cheol Shin, Su-Jin Song, Suck Won Hong, Seung Jo Jeong, Wojciech Chrzanowski, Jae-Chang Lee, Dong-Wook Han

Affiliations

  1. Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Korea. [email protected].
  2. Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea. [email protected].
  3. Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea. [email protected].
  4. GS Medical Co., Ltd., Cheongju-si, Chungcheongbuk-do 28161, Korea. [email protected].
  5. Australian Institute for Nanoscale Science and Technology, Charles Perkins Centre, Faculty of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, Sydney NSW 2006, Australia. [email protected].
  6. Research Center for Industrial Chemical Biotechnology, Korea Research Institute of Chemical Technology, Ulsan 44429, Korea. [email protected].
  7. Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea. [email protected].

PMID: 29113052 PMCID: PMC5707586 DOI: 10.3390/nano7110369

Abstract

Because of recent research advances in nanoscience and nanotechnology, there has been a growing interest in functional nanomaterials for biomedical applications, such as tissue engineering scaffolds, biosensors, bioimaging agents and drug delivery carriers. Among a great number of promising candidates, graphene and its derivatives-including graphene oxide and reduced graphene oxide-have particularly attracted plenty of attention from researchers as novel nanobiomaterials. Graphene and its derivatives, two-dimensional nanomaterials, have been found to have outstanding biocompatibility and biofunctionality as well as exceptional mechanical strength, electrical conductivity and thermal stability. Therefore, tremendous studies have been devoted to employ functional graphene nanomaterials in biomedical applications. Herein, we focus on the biological potentials of functional graphene nanomaterials and summarize some of major literature concerning the multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds that have been reported in recent years.

Keywords: coated substrate; graphene nanomaterial; hybrid scaffold; multifaceted biomedical application; patterned array

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Angew Chem Int Ed Engl. 2001 Jul 16;40(14):2581-2590 - PubMed
  2. Science. 2001 Nov 23;294(5547):1708-12 - PubMed
  3. FASEB J. 2002 Feb;16(2):270-2 - PubMed
  4. Dev Cell. 2002 Feb;2(2):153-8 - PubMed
  5. Nature. 2002 Oct 31;419(6910):887, 889 - PubMed
  6. Science. 2004 Oct 22;306(5696):666-9 - PubMed
  7. Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1915-24 - PubMed
  8. Science. 2005 Nov 18;310(5751):1139-43 - PubMed
  9. Biomaterials. 2006 May;27(15):2980-7 - PubMed
  10. Biomaterials. 2007 Sep;28(27):4017-22 - PubMed
  11. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45 - PubMed
  12. Cell. 2007 Aug 24;130(4):601-10 - PubMed
  13. Nano Lett. 2008 Jul;8(7):2045-9 - PubMed
  14. Nat Nanotechnol. 2007 Aug;2(8):469-78 - PubMed
  15. Am J Physiol Cell Physiol. 2008 Oct;295(4):C1037-44 - PubMed
  16. Adv Drug Deliv Rev. 2009 Jun 21;61(6):457-66 - PubMed
  17. Chem Commun (Camb). 2010 Apr 14;46(14):2376-8 - PubMed
  18. Chem Rev. 2010 Sep 8;110(9):5332-65 - PubMed
  19. ACS Nano. 2010 Jun 22;4(6):3181-6 - PubMed
  20. ACS Nano. 2010 Oct 26;4(10):5731-6 - PubMed
  21. J Bone Miner Res. 2011 Apr;26(4):730-8 - PubMed
  22. ACS Nano. 2010 Nov 23;4(11):6587-98 - PubMed
  23. Trends Biotechnol. 2011 May;29(5):205-12 - PubMed
  24. ACS Nano. 2011 Jun 28;5(6):4670-8 - PubMed
  25. Chem Soc Rev. 2011 Jul;40(7):4167-85 - PubMed
  26. ACS Appl Mater Interfaces. 2011 Jul;3(7):2607-15 - PubMed
  27. ACS Nano. 2011 Sep 27;5(9):7334-41 - PubMed
  28. Adv Mater. 2011 Sep 22;23(36):H263-7 - PubMed
  29. Biomaterials. 2007 Jan;28(2):354-69 - PubMed
  30. Chem Res Toxicol. 2012 Jan 13;25(1):15-34 - PubMed
  31. Biomaterials. 2012 Jan;33(2):418-27 - PubMed
  32. Biomaterials. 2012 Jan;33(2):402-11 - PubMed
  33. Nanoscale. 2012 Jun 7;4(11):3274-94 - PubMed
  34. Small. 2012 Jul 23;8(14):2138-51 - PubMed
  35. Biomaterials. 2012 Oct;33(29):6933-42 - PubMed
  36. Biomaterials. 2012 Nov;33(32):8017-25 - PubMed
  37. Small. 2013 May 27;9(9-10):1492-503 - PubMed
  38. Biosens Bioelectron. 2013 Mar 15;41:621-6 - PubMed
  39. Biomaterials. 2013 Mar;34(8):2017-23 - PubMed
  40. Nanoscale. 2013 May 7;5(9):3620-6 - PubMed
  41. Nanoscale. 2013 May 7;5(9):3589-600 - PubMed
  42. Nanoscale. 2013 May 7;5(9):3547-69 - PubMed
  43. Sci Rep. 2013;3:1604 - PubMed
  44. Nanoscale. 2013 May 21;5(10):4171-6 - PubMed
  45. Chemistry. 2013 Jun 17;19(25):8227-35 - PubMed
  46. Biomaterials. 2013 Sep;34(27):6402-11 - PubMed
  47. Adv Healthc Mater. 2014 Feb;3(2):176-81 - PubMed
  48. Nat Nanotechnol. 2013 Oct;8(10):735-41 - PubMed
  49. Small. 2014 Feb 12;10(3):514-23 - PubMed
  50. Adv Healthc Mater. 2014 Jul;3(7):995-1000 - PubMed
  51. ACS Nano. 2014 Feb 25;8(2):1834-43 - PubMed
  52. ACS Nano. 2014 Mar 25;8(3):2632-8 - PubMed
  53. Adv Mater. 2014 May 28;26(20):3333-7 - PubMed
  54. Adv Mater. 2014 Jun 11;26(22):3673-80 - PubMed
  55. Science. 2014 Apr 18;344(6181):261-3 - PubMed
  56. Macromol Biosci. 2014 Mar;14(3):314-9 - PubMed
  57. Chem Rev. 2014 Jul 23;114(14):7150-88 - PubMed
  58. Arch Toxicol. 2015 Sep;89(9):1557-68 - PubMed
  59. ACS Nano. 2014 Aug 26;8(8):8050-62 - PubMed
  60. Small. 2014 Oct 29;10(20):4042-65 - PubMed
  61. Biochem Biophys Res Commun. 2014 Sep 12;452(1):174-80 - PubMed
  62. Small. 2015 Feb 25;11(8):963-9 - PubMed
  63. Nat Commun. 2014 Oct 20;5:5258 - PubMed
  64. ACS Nano. 2015 Mar 24;9(3):2677-88 - PubMed
  65. Biofabrication. 2015 Feb 18;7(1):015009 - PubMed
  66. ACS Nano. 2015;9(4):3780-90 - PubMed
  67. Carbon N Y. 2016 Feb 1;97:14-24 - PubMed
  68. ACS Nano. 2015;9(4):4636-48 - PubMed
  69. J Nanobiotechnology. 2015 Mar 12;13:21 - PubMed
  70. J Mater Chem B. 2013 Mar 7;1(9):1340-1348 - PubMed
  71. Nanoscale. 2015 Jul 21;7(27):11642-51 - PubMed
  72. Adv Mater. 2015 Dec 2;27(45):7261-84 - PubMed
  73. ACS Nano. 2015 Nov 24;9(11):10867-75 - PubMed
  74. Sci Rep. 2015 Dec 21;5:18833 - PubMed
  75. J Biomed Mater Res A. 2017 Jan;105(1):274-283 - PubMed
  76. Nanotechnol Sci Appl. 2016 Mar 16;9:15-28 - PubMed
  77. Cells. 2016 Apr 06;5(2):null - PubMed
  78. Colloids Surf B Biointerfaces. 2016 Sep 1;145:72-78 - PubMed
  79. ACS Biomater Sci Eng. 2016 Aug 8;2(8):1234-1241 - PubMed
  80. Nanomaterials (Basel). 2016 Apr 18;6(4): - PubMed
  81. Nanomaterials (Basel). 2017 May 03;7(5): - PubMed
  82. J Biomater Sci Polym Ed. 2018 May - Jun;29(7-9):762-774 - PubMed
  83. Regen Biomater. 2017 Jun;4(3):159-166 - PubMed
  84. Materials (Basel). 2016 Nov 04;9(11):null - PubMed
  85. Int J Mol Sci. 2017 Aug 08;18(8):null - PubMed
  86. Micromachines (Basel). 2016 Oct 14;7(10):null - PubMed
  87. Cell. 1996 Feb 9;84(3):359-69 - PubMed

Publication Types