Display options
Share it on

Front Neurosci. 2017 Oct 06;11:553. doi: 10.3389/fnins.2017.00553. eCollection 2017.

Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease.

Frontiers in neuroscience

María J Pérez, Daniela P Ponce, Cesar Osorio-Fuentealba, Maria I Behrens, Rodrigo A Quintanilla

Affiliations

  1. Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
  2. Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile.
  3. Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.
  4. Departamento Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Ñuñoa, Chile.

PMID: 29056898 PMCID: PMC5635042 DOI: 10.3389/fnins.2017.00553

Abstract

The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients.

Keywords: Alzheimer's disease; OPA1; biomarker; fibroblasts; mitochondria

References

  1. PLoS One. 2010 Sep 27;5(9):e12962 - PubMed
  2. N Engl J Med. 2010 Jan 28;362(4):329-44 - PubMed
  3. Eur J Biochem. 2002 Apr;269(8):1996-2002 - PubMed
  4. Neuroscience. 2016 Apr 21;320:105-21 - PubMed
  5. Nature. 2016 Nov 09;539(7628):180-186 - PubMed
  6. Front Cell Neurosci. 2016 Feb 09;10:24 - PubMed
  7. J Cell Biol. 2014 Mar 17;204(6):919-29 - PubMed
  8. EMBO J. 2012 Mar 21;31(6):1336-49 - PubMed
  9. Neurochem Res. 2016 Feb;41(1-2):353-63 - PubMed
  10. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S14-6 - PubMed
  11. J Neural Transm (Vienna). 2010 Jan;117(1):77-83 - PubMed
  12. Hum Mol Genet. 2012 Oct 1;21(19):4201-13 - PubMed
  13. Biochim Biophys Acta. 2014 Sep;1842(9):1385-94 - PubMed
  14. J Biol Chem. 2009 Jul 10;284(28):18754-66 - PubMed
  15. Oxid Med Cell Longev. 2015;2015:509654 - PubMed
  16. Cancer Res. 2001 Dec 15;61(24):8873-9 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18670-5 - PubMed
  18. Hum Mol Genet. 2010 Aug 15;19(16):3124-37 - PubMed
  19. Front Neurol. 2012 Jan 20;3:5 - PubMed
  20. J Cell Sci. 2003 Jul 1;116(Pt 13):2763-74 - PubMed
  21. Neurology. 2007 Jan 30;68(5):326-37 - PubMed
  22. J Alzheimers Dis. 2007 Sep;12(2):195-206 - PubMed
  23. Mol Aspects Med. 2011 Aug;32(4-6):247-57 - PubMed
  24. Biochem Biophys Res Commun. 2014 May 2;447(2):334-40 - PubMed
  25. Neuropeptides. 2015 Aug;52:1-18 - PubMed
  26. Dev Cell. 2011 Sep 13;21(3):469-78 - PubMed
  27. Neuron. 2013 Apr 10;78(1):57-64 - PubMed
  28. Elife. 2013 May 14;2:e00422 - PubMed
  29. Hum Mol Genet. 2013 Apr 15;22(8):1581-600 - PubMed
  30. Neurology. 1993 Nov;43(11):2412-4 - PubMed
  31. Neurobiol Aging. 2012 Mar;33(3):619.e25-35 - PubMed
  32. Metab Brain Dis. 2015 Oct;30(5):1275-8 - PubMed
  33. J Food Sci. 2014 Jul;79(7):E1343-50 - PubMed
  34. Biochem J. 2011 Apr 15;435(2):297-312 - PubMed
  35. Front Genet. 2015 Mar 11;6:78 - PubMed
  36. Mol Genet Metab. 2013 Aug;109 (4):402-3 - PubMed
  37. J Neurochem. 2009 May;109 Suppl 1:153-9 - PubMed
  38. J Neurosci. 2009 Jul 15;29(28):9090-103 - PubMed
  39. Ann N Y Acad Sci. 1993 Sep 24;695:73-6 - PubMed
  40. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):534-8 - PubMed
  41. J Alzheimers Dis. 2015;44(3):729-44 - PubMed
  42. Biochim Biophys Acta. 2011 Aug;1812(8):1041-53 - PubMed
  43. Cell. 2012 Mar 16;148(6):1204-22 - PubMed
  44. Hum Mol Genet. 2011 Jul 1;20(13):2495-509 - PubMed
  45. Rev Med Chil. 2012 Sep;140(9):1191-200 - PubMed
  46. Brain. 2012 Dec;135(Pt 12):3584-98 - PubMed
  47. Mol Neurodegener. 2013 Dec 11;8:45 - PubMed
  48. Neurobiol Aging. 2014 Jun;35(6):1499-509 - PubMed
  49. J Neurol Sci. 2014 Feb 15;337(1-2):42-6 - PubMed
  50. Neurochem Int. 2017 Oct;109 :101-105 - PubMed
  51. Am J Pathol. 2008 Aug;173(2):470-82 - PubMed
  52. Mol Neurobiol. 2017 Oct;54(8):6046-6060 - PubMed
  53. Science. 2011 Oct 21;334(6054):358-62 - PubMed
  54. Mech Ageing Dev. 2006 Jan;127(1):25-35 - PubMed
  55. Biochim Biophys Acta. 2011 Jul;1813(7):1302-8 - PubMed
  56. Nat Rev Neurosci. 2008 Jul;9(7):505-18 - PubMed
  57. Annu Rev Biochem. 2016 Jun 2;85:161-92 - PubMed
  58. Ann Neurol. 2008 Nov;64(5):555-65 - PubMed
  59. J Mol Med (Berl). 2007 Dec;85(12):1347-9 - PubMed
  60. Free Radic Biol Med. 2002 Nov 15;33(10 ):1372-9 - PubMed
  61. J Vis Exp. 2013 Jul 07;(77):e3779 - PubMed
  62. Neurology. 1984 Jul;34(7):939-44 - PubMed
  63. Life Sci. 1996;59(5-6):477-89 - PubMed

Publication Types