Display options
Share it on

Neurophotonics. 2018 Jan;5(1):011018. doi: 10.1117/1.NPh.5.1.011018. Epub 2017 Oct 16.

Using prerecorded hemodynamic response functions in detecting prefrontal pain response: a functional near-infrared spectroscopy study.

Neurophotonics

Ke Peng, Meryem A Yücel, Christopher M Aasted, Sarah C Steele, David A Boas, David Borsook, Lino Becerra

Affiliations

  1. Harvard Medical School, Center for Pain and the Brain, Boston, Massachusetts, United States.
  2. Boston Children's Hospital and Harvard Medical School, Department of Anesthesiology, Perioperative and Pain Medicine, Boston, Massachusetts, United States.
  3. Massachusetts General Hospital and Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States.
  4. Boston University, Boston University Neurophotonics Center, Boston, Massachusetts, United States.

PMID: 29057285 PMCID: PMC5641587 DOI: 10.1117/1.NPh.5.1.011018

Abstract

Currently, there is no method for providing a nonverbal objective assessment of pain. Recent work using functional near-infrared spectroscopy (fNIRS) has revealed its potential for objective measures. We conducted two fNIRS scans separated by 30 min and measured the hemodynamic response to the electrical noxious and innocuous stimuli over the anterior prefrontal cortex (aPFC) in 14 subjects. Based on the estimated hemodynamic response functions (HRFs), we first evaluated the test-retest reliability of using fNIRS in measuring the pain response over the aPFC. We then proposed a general linear model (GLM)-based detection model that employs the subject-specific HRFs from the first scan to detect the pain response in the second scan. Our results indicate that fNIRS has a reasonable reliability in detecting the hemodynamic changes associated with noxious events, especially in the medial portion of the aPFC. Compared with a standard HRF with a fixed shape, including the subject-specific HRFs in the GLM allows for a significant improvement in the detection sensitivity of aPFC pain response. This study supports the potential application of individualized analysis in using fNIRS and provides a robust model to perform objective determination of pain perception.

Keywords: anterior prefrontal cortex; detection sensitivity; hemodynamic response function; near-infrared spectroscopy; pain; test–retest reliability

References

  1. Neuroimage. 2010 Feb 1;49(3):2178-89 - PubMed
  2. Pain. 2008 Aug 31;138(2):362-74 - PubMed
  3. Pain Physician. 2015 Mar-Apr;18(2):131-52 - PubMed
  4. Heart Lung. 2010 Nov-Dec;39(6):485-93 - PubMed
  5. Hum Brain Mapp. 2013 Mar;34(3):738-52 - PubMed
  6. Front Hum Neurosci. 2011 Mar 18;5:28 - PubMed
  7. PLoS One. 2016 Jul 14;11(7):e0158975 - PubMed
  8. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18692-7 - PubMed
  9. Epilepsy Res. 2014 Mar;108(3):491-505 - PubMed
  10. Oral Dis. 2008 Nov;14(8):673-82 - PubMed
  11. Brain Struct Funct. 2015 Sep;220(5):2603-16 - PubMed
  12. Sci Rep. 2015 Mar 30;5:9469 - PubMed
  13. Neurogastroenterol Motil. 2009 Mar;21(3):259-71 - PubMed
  14. Epilepsia. 2010 Sep;51(9):1837-45 - PubMed
  15. Neuroimage. 2012 Nov 1;63(2):921-35 - PubMed
  16. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74 - PubMed
  17. Pain. 2010 Jul;150(1):59-65 - PubMed
  18. Pain. 2012 Oct;153(10):2140-51 - PubMed
  19. J Pain. 2014 Oct;15(10):1008-14 - PubMed
  20. Eur J Pain. 2005 Aug;9(4):463-84 - PubMed
  21. Brain Behav. 2016 Aug 24;6(11):e00541 - PubMed
  22. Neuroimage. 2012 Nov 15;63(3):1162-70 - PubMed
  23. Neuroimage. 2010 Feb 1;49(3):2564-9 - PubMed
  24. Pain. 2016 Apr;157(4):840-848 - PubMed
  25. J Neurosci. 2013 Apr 17;33(16):6782-90 - PubMed
  26. Anal Chim Acta. 2013 Jan 14;760:25-33 - PubMed
  27. Neurosci Biobehav Rev. 2010 Mar;34(3):269-84 - PubMed
  28. Neuroimage. 2011 Jun 1;56(3):1362-71 - PubMed
  29. PLoS One. 2013 Oct 03;8(10):e75360 - PubMed
  30. Am J Physiol Regul Integr Comp Physiol. 2006 Aug;291(2):R257-67 - PubMed
  31. Pain. 2008 Jul 15;137(2):413-21 - PubMed
  32. Neurorehabil Neural Repair. 2012 May;26(4):344-52 - PubMed
  33. PLoS One. 2016 Nov 2;11(11):e0165226 - PubMed
  34. J Integr Neurosci. 2014 Mar;13(1):121-42 - PubMed
  35. Appl Opt. 2009 Apr 1;48(10):D280-98 - PubMed
  36. Science. 1977 Dec 23;198(4323):1264-7 - PubMed
  37. Neurophotonics. 2016 Oct;3(4):045008 - PubMed
  38. Psychol Bull. 1979 Mar;86(2):420-8 - PubMed
  39. Neuroimage. 2014 Jan 15;85 Pt 1:535-46 - PubMed
  40. N Engl J Med. 2013 Apr 11;368(15):1388-97 - PubMed
  41. J Neurosci Methods. 2015 Sep 30;253:38-46 - PubMed
  42. Pain. 2010 Feb;148(2):257-67 - PubMed
  43. Hum Brain Mapp. 2009 Feb;30(2):625-37 - PubMed
  44. PLoS One. 2011;6(9):e24124 - PubMed
  45. Biomed Opt Express. 2016 Jul 22;7(8):3078-88 - PubMed
  46. J Neurosci. 2010 Apr 14;30(15):5451-64 - PubMed
  47. J Biomed Opt. 2016 Oct;21(10 ):101411 - PubMed
  48. J Neurosci Methods. 2012 Feb 15;204(1):61-7 - PubMed
  49. Ann Biomed Eng. 2013 Feb;41(2):223-37 - PubMed
  50. Pain. 2006 May;122(1-2):63-7 - PubMed
  51. Neuroimage. 2009 Jan 15;44(2):428-47 - PubMed
  52. Neuroimage Clin. 2014 Jul 22;5:309-21 - PubMed
  53. Anesthesiology. 2001 May;94(5):732-9 - PubMed
  54. Neurosci Lett. 2014 Jul 11;575:74-9 - PubMed
  55. Neuroimage. 2014 Jan 15;85 Pt 1:72-91 - PubMed

Publication Types

Grant support