Display options
Share it on

NPJ Parkinsons Dis. 2017 Oct 17;3:30. doi: 10.1038/s41531-017-0032-2. eCollection 2017.

Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease.

NPJ Parkinson's disease

Souvarish Sarkar, Emir Malovic, Dilshan S Harishchandra, Shivani Ghaisas, Nikhil Panicker, Adhithiya Charli, Bharathi N Palanisamy, Dharmin Rokad, Huajun Jin, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G Kanthasamy

Affiliations

  1. Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA.
  2. Present Address: Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, 642 BRB II/III, Philadelphia, PA 19104 USA.
  3. Present Address: Institute for Cell Engineering, The Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD 21210 USA.

PMID: 29057315 PMCID: PMC5645400 DOI: 10.1038/s41531-017-0032-2

Abstract

The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. Oxidative stress and mitochondrial dysfunction are key pathophysiological processes of many chronic neurodegenerative diseases, including Parkinson's disease (PD). However, the inter-relationship between mitochondrial defects and neuroinflammation is not well understood. In the present study, we show that impaired mitochondrial function can augment the NLRP3 inflammasome-driven proinflammatory cascade in microglia. Primary mouse microglia treated with the common inflammogen LPS increased NLRP3 and pro-IL-1β expression. Interestingly, exposure of LPS-primed microglial cells to the mitochondrial complex-I inhibitory pesticides rotenone and tebufenpyrad specifically potentiated the NLRP3 induction, ASC speck formation and pro-IL-1β processing to IL-1β in a dose-dependent manner, indicating that mitochondrial impairment heightened the NLRP3 inflammasome-mediated proinflammatory response in microglia. The neurotoxic pesticide-induced NLRP3 inflammasome activation was accompanied by bioenergetic defects and lysosomal dysfunction in microglia. Furthermore, the pesticides enhanced mitochondrial ROS generation in primary microglia, while amelioration of mitochondria-derived ROS by the mitochondria-targeted antioxidant mito-apocynin completely abolished IL-1β release, indicating mitochondrial ROS drives potentiation of the NLRP3 inflammasome in microglia. Exposure to conditioned media obtained from mitochondrial inhibitor-treated, LPS-primed microglial cells, but not unprimed cells, induced dopaminergic neurodegeneration in cultured primary mesencephalic and human dopaminergic neuronal cells (LUHMES). Notably, our in vivo results with chronic rotenone rodent models of PD further support the activation of proinflammatory NLRP3 inflammasome signaling due to mitochondrial dysfunction. Collectively, our results demonstrate that mitochondrial impairment in microglia can amplify NLRP3 inflammasome signaling, which augments the dopaminergic neurodegenerative process.

References

  1. J Neurochem. 2007 Jun;101(6):1491-1504 - PubMed
  2. Curr Protoc Cell Biol. 2010 Mar;Chapter 4:Unit 4.25.1-21 - PubMed
  3. Nat Immunol. 2014 Aug;15(8):738-48 - PubMed
  4. Nature. 2011 Jan 13;469(7329):221-5 - PubMed
  5. FEBS J. 2013 Oct;280(20):5030-8 - PubMed
  6. J Neurosci. 2011 Feb 9;31(6):2035-51 - PubMed
  7. Biol Pharm Bull. 2011;34(1):92-6 - PubMed
  8. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6145-50 - PubMed
  9. J Clin Biochem Nutr. 2015 Jan;56(1):1-7 - PubMed
  10. Exp Neurobiol. 2015 Jun;24(2):103-16 - PubMed
  11. J Pathol. 2015 Sep;237(1):98-110 - PubMed
  12. Antioxid Redox Signal. 2012 May 1;16(9):920-34 - PubMed
  13. PLoS One. 2015 Jun 19;10 (6):e0130624 - PubMed
  14. Free Radic Biol Med. 2013 Jul;60:233-45 - PubMed
  15. J Vis Exp. 2017 Apr 13;(122): - PubMed
  16. J Cereb Blood Flow Metab. 2009 Jul;29(7):1251-61 - PubMed
  17. Neurol Clin. 2015 Feb;33(1):1-17 - PubMed
  18. J Neurochem. 2016 Jan;136(2):388-402 - PubMed
  19. J Neuroimmunol. 2013 Dec 15;265(1-2):1-10 - PubMed
  20. J Pharmacol Exp Ther. 2003 Jan;304(1):1-7 - PubMed
  21. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):E771-80 - PubMed
  22. Nat Med. 2015 Mar;21(3):248-55 - PubMed
  23. Neurosci Lett. 2014 Nov 7;583:159-64 - PubMed
  24. Cell. 2013 Apr 11;153(2):348-61 - PubMed
  25. Trends Biochem Sci. 2016 Dec;41(12 ):1012-1021 - PubMed
  26. J Neurochem. 2016 Jan;136 Suppl 1:29-38 - PubMed
  27. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a009381 - PubMed
  28. Mol Neurodegener. 2016 Mar 03;11:23 - PubMed
  29. Nature. 2013 Oct 31;502(7473):S86-7 - PubMed
  30. Immunity. 2012 Mar 23;36(3):401-14 - PubMed
  31. Cold Spring Harb Perspect Med. 2012 Apr;2(4):a009357 - PubMed
  32. Neurobiol Dis. 2009 May;34(2):279-90 - PubMed
  33. J Neuroimmune Pharmacol. 2016 Jun;11(2):259-78 - PubMed
  34. J Vis Exp. 2011 Mar 03;(49):null - PubMed
  35. J Neurochem. 2007 Mar;100(6):1469-79 - PubMed
  36. Nat Immunol. 2014 Aug;15(8):727-37 - PubMed
  37. J Immunol. 2014 Apr 1;192(7):3259-68 - PubMed
  38. Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S6-12 - PubMed
  39. Annu Rev Pharmacol Toxicol. 2014;54:141-64 - PubMed
  40. Neurobiol Dis. 2010 Mar;37(3):510-8 - PubMed
  41. Cell Mol Immunol. 2016 Mar;13(2):148-59 - PubMed
  42. J Neurosci Methods. 2011 Jan 15;194(2):287-96 - PubMed
  43. Neurotoxicology. 2017 May 21;: - PubMed
  44. BMC Med. 2013 Aug 06;11:178 - PubMed
  45. J Neural Transm Suppl. 2000;(58):143-51 - PubMed
  46. CNS Neurosci Ther. 2014 Dec;20(12):1036-44 - PubMed
  47. J Neurosci. 2015 Jul 8;35(27):10058-77 - PubMed
  48. J Neurochem. 2015 Oct;135(2):402-15 - PubMed
  49. J Neuroinflammation. 2016 Apr 05;13(1):71 - PubMed
  50. Sci Transl Med. 2016 Jun 8;8(342):342ra78 - PubMed
  51. Methods Mol Biol. 2014;1126:271-83 - PubMed
  52. Trends Mol Med. 2015 Mar;21(3):193-201 - PubMed
  53. Nat Rev Neurosci. 2007 Jan;8(1):57-69 - PubMed
  54. Nature. 2013 Jan 31;493(7434):674-8 - PubMed
  55. Nat Med. 2015 Jul;21(7):677-87 - PubMed
  56. Nat Immunol. 2013 May;14 (5):480-8 - PubMed
  57. Br J Pharmacol. 2007 Apr;150(8):963-76 - PubMed
  58. Nat Immunol. 2008 Aug;9(8):857-65 - PubMed
  59. J Parkinsons Dis. 2014;4(3):349-60 - PubMed
  60. Aging Cell. 2016 Feb;15(1):77-88 - PubMed
  61. Nat Rev Neurosci. 2006 Mar;7(3):207-19 - PubMed
  62. Front Cell Neurosci. 2014 Aug 01;8:216 - PubMed
  63. Nat Immunol. 2013 May;14 (5):454-60 - PubMed
  64. Cell Res. 2011 Apr;21(4):558-60 - PubMed
  65. Nanomedicine. 2017 Apr;13(3):809-820 - PubMed
  66. Nat Rev Neurosci. 2002 Dec;3(12):932-42 - PubMed
  67. Free Radic Biol Med. 2014 Nov;76:34-46 - PubMed
  68. Nat Rev Immunol. 2013 Jun;13(6):397-411 - PubMed
  69. Neurotoxicology. 2016 Mar;53:302-313 - PubMed
  70. Brain Res Bull. 2017 Jul;133:60-70 - PubMed
  71. Clin Neurosci Res. 2006 Dec;6(5):237-245 - PubMed
  72. Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:437-454 - PubMed

Publication Types

Grant support