Display options
Share it on

Nat Commun. 2017 Oct 20;8(1):1076. doi: 10.1038/s41467-017-01167-2.

Fast methane diffusion at the interface of two clathrate structures.

Nature communications

Umbertoluca Ranieri, Michael Marek Koza, Werner F Kuhs, Stefan Klotz, Andrzej Falenty, Philippe Gillet, Livia E Bove

Affiliations

  1. EPSL, ICMP, École polytechnique fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland. [email protected].
  2. Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble cedex 9, France. [email protected].
  3. Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble cedex 9, France.
  4. GZG Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077, Göttingen, Germany.
  5. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie Paris 06, CNRS Unité Mixte de Recherche 7590, Sorbonne Universités, F-75252, Paris, France.
  6. EPSL, ICMP, École polytechnique fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland.
  7. EPSL, ICMP, École polytechnique fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland. [email protected].
  8. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie Paris 06, CNRS Unité Mixte de Recherche 7590, Sorbonne Universités, F-75252, Paris, France. [email protected].

PMID: 29057864 PMCID: PMC5715113 DOI: 10.1038/s41467-017-01167-2

Abstract

Methane hydrates naturally form on Earth and in the interiors of some icy bodies of the Universe, and are also expected to play a paramount role in future energy and environmental technologies. Here we report experimental observation of an extremely fast methane diffusion at the interface of the two most common clathrate hydrate structures, namely clathrate structures I and II. Methane translational diffusion-measured by quasielastic neutron scattering at 0.8 GPa-is faster than that expected in pure supercritical methane at comparable pressure and temperature. This phenomenon could be an effect of strong confinement or of methane aggregation in the form of micro-nanobubbles at the interface of the two structures. Our results could have implications for understanding the replacement kinetics during sI-sII conversion in gas exchange experiments and for establishing the methane mobility in methane hydrates embedded in the cryosphere of large icy bodies in the Universe.

References

  1. Science. 1999 May 7;284(5416):943-5 - PubMed
  2. J Phys Chem Lett. 2012 Oct 18;3(20):2942-7 - PubMed
  3. J Chem Phys. 2015 Jun 28;142(24):244503 - PubMed
  4. J Chem Phys. 2014 Feb 28;140(8):084506 - PubMed
  5. Phys Rev Lett. 2002 Oct 28;89(18):185901 - PubMed
  6. J Phys Chem A. 2010 Jan 14;114(1):247-55 - PubMed
  7. J Phys Chem B. 2006 Jul 6;110(26):13283-95 - PubMed
  8. J Am Chem Soc. 2008 Dec 24;130(51):17342-50 - PubMed
  9. J Phys Chem A. 2014 Mar 20;118(11):1971-88 - PubMed
  10. Sci Adv. 2016 Apr 08;2(4):e1501781 - PubMed
  11. J Chem Phys. 2015 Jun 7;142(21):214701 - PubMed
  12. J Chem Phys. 2016 Feb 7;144(5):054301 - PubMed
  13. J Phys Chem B. 2015 Dec 31;119(52):15857-65 - PubMed
  14. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13484-7 - PubMed
  15. Angew Chem Int Ed Engl. 2004 Jun 21;43(25):3310-3 - PubMed
  16. J Am Chem Soc. 2001 Dec 26;123(51):12826-31 - PubMed
  17. J Am Chem Soc. 2006 Dec 13;128(49):15588-9 - PubMed
  18. Science. 2009 Nov 20;326(5956):1095-8 - PubMed
  19. J Chem Phys. 2015 Mar 28;142(12):124505 - PubMed
  20. Nature. 2001 Apr 5;410(6829):661-3 - PubMed
  21. J Am Chem Soc. 2011 Apr 27;133(16):6458-63 - PubMed

Publication Types