Display options
Share it on

Beilstein J Nanotechnol. 2017 Oct 17;8:2171-2180. doi: 10.3762/bjnano.8.216. eCollection 2017.

Evaluating the toxicity of TiO.

Beilstein journal of nanotechnology

Alicja Mikolajczyk, Natalia Sizochenko, Ewa Mulkiewicz, Anna Malankowska, Michal Nischk, Przemyslaw Jurczak, Seishiro Hirano, Grzegorz Nowaczyk, Adriana Zaleska-Medynska, Jerzy Leszczynski, Agnieszka Gajewicz, Tomasz Puzyn

Affiliations

  1. Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
  2. Interdisciplinary Center for Nanotoxicity, Jackson State University, 39217, Jackson, MS, USA.
  3. Department of Environmental Analytics, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
  4. Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
  5. Department of Biomedical Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
  6. Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 16-2 Onogawa, Ibaraki 305-8506, Japan.
  7. NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland.

PMID: 29114443 PMCID: PMC5669235 DOI: 10.3762/bjnano.8.216

Abstract

Titania-supported palladium, gold and bimetallic nanoparticles (second-generation nanoparticles) demonstrate promising photocatalytic properties. However, due to unusual reactivity, second-generation nanoparticles can be hazardous for living organisms. Considering the ever-growing number of new types of nanoparticles that can potentially contaminate the environment, a determination of their toxicity is extremely important. The main aim of presented study was to investigate the cytotoxic effect of surface modified TiO

Keywords: Au/Pd–TiO2 photocatalyst; bimetallic nanoparticles; nano-QSAR; nanotoxicity; second-generation nanoparticles

References

  1. Chem Rev. 2014 Oct 8;114(19):9662-707 - PubMed
  2. Chemosphere. 2013 Jun;92(1):31-7 - PubMed
  3. Nanotoxicology. 2015;9(5):636-42 - PubMed
  4. Nanoscale. 2015 Aug 28;7(32):13369-72 - PubMed
  5. In Vivo. 2010 Jul-Aug;24(4):513-7 - PubMed
  6. Nanotoxicology. 2015 May;9(3):313-25 - PubMed
  7. Science. 2006 Feb 3;311(5761):622-7 - PubMed
  8. Small. 2009 Nov;5(22):2494-509 - PubMed
  9. Nanoscale. 2014 Nov 21;6(22):13986-93 - PubMed
  10. Toxicol Lett. 2013 Mar 13;217(3):205-16 - PubMed
  11. J Am Chem Soc. 2011 Jul 27;133(29):11270-8 - PubMed
  12. Environ Sci Technol. 2011 Oct 15;45(20):8989-95 - PubMed
  13. Biomaterials. 2010 Oct;31(30):7606-19 - PubMed
  14. Chemosphere. 2007 Feb;67(2):396-401 - PubMed
  15. J Chem Inf Model. 2011 Sep 26;51(9):2320-35 - PubMed
  16. Chemosphere. 2013 Nov;93(10):2650-5 - PubMed
  17. Ecotoxicol Environ Saf. 2014 Sep;107:162-9 - PubMed
  18. Nanoscale. 2016 Apr 7;8(13):7203-8 - PubMed
  19. PLoS One. 2015 Jun 10;10(6):e0129039 - PubMed
  20. Nanomedicine (Lond). 2007 Oct;2(5):681-93 - PubMed
  21. Nat Nanotechnol. 2011 Mar;6(3):175-8 - PubMed
  22. J Oral Rehabil. 1996 May;23(5):309-20 - PubMed
  23. ACS Appl Mater Interfaces. 2016 Mar 23;8(11):6841-51 - PubMed
  24. Ecotoxicol Environ Saf. 2015 Feb;112:39-45 - PubMed
  25. Adv Mater. 2012 Jan 10;24(2):229-51 - PubMed
  26. ACS Nano. 2012 Jun 26;6(6):5164-73 - PubMed
  27. Int J Nanomedicine. 2013;8:3679-87 - PubMed
  28. ACS Nano. 2010 Oct 26;4(10):5703-12 - PubMed
  29. Part Fibre Toxicol. 2011 Mar 03;8:10 - PubMed
  30. Analyst. 2014 Mar 7;139(5):943-53 - PubMed

Publication Types