Display options
Share it on

J Exerc Rehabil. 2017 Oct 30;13(5):502-507. doi: 10.12965/jer.1735114.557. eCollection 2017 Oct.

Skeletal muscle contraction-induced vasodilation in the microcirculation.

Journal of exercise rehabilitation

Kwang-Seok Hong, Kijeong Kim

Affiliations

  1. Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA.
  2. School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea.

PMID: 29114523 PMCID: PMC5667595 DOI: 10.12965/jer.1735114.557

Abstract

Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.

Keywords: Blood flow control; Endothelium; Exercise hyperaemia; Intramuscular vasculature; Microcirculation; Vascular smooth muscle cell

Conflict of interest statement

CONFLICT OF INTEREST No potential conflict of interest relevant to this article was reported.

References

  1. J Physiol. 2006 Apr 15;572(Pt 2):561-7 - PubMed
  2. J Appl Physiol (1985). 2004 Jul;97(1):393-403 - PubMed
  3. Circ Res. 2008 Feb 15;102(3):372-9 - PubMed
  4. Acta Histochem. 1996 Jan;98(1):61-9 - PubMed
  5. J Physiol. 2016 Apr 15;594(8):2261-73 - PubMed
  6. J Physiol. 2007 Sep 15;583(Pt 3):861-74 - PubMed
  7. J Physiol. 2012 Dec 15;590(24):6285-96 - PubMed
  8. J Appl Physiol (1985). 2009 Dec;107(6):1757-62 - PubMed
  9. J Gen Physiol. 2015 Sep;146(3):221-32 - PubMed
  10. J Appl Physiol (1985). 1998 Dec;85(6):2249-54 - PubMed
  11. Front Cell Dev Biol. 2015 Jan 07;2:73 - PubMed
  12. J Physiol. 2001 Feb 15;531(Pt 1):257-64 - PubMed
  13. J Physiol. 2007 Feb 15;579(Pt 1):175-86 - PubMed
  14. Am J Physiol Heart Circ Physiol. 2014 Sep 1;307(5):H782-91 - PubMed
  15. Circ Res. 2012 Jul 6;111(2):220-30 - PubMed
  16. Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1140-8 - PubMed
  17. FASEB J. 2010 Sep;24(9):3572-9 - PubMed
  18. J Physiol. 2007 Jun 1;581(Pt 2):841-52 - PubMed
  19. Am J Physiol. 1993 Nov;265(5 Pt 1):C1363-70 - PubMed
  20. J Physiol. 2007 Sep 15;583(Pt 3):825-33 - PubMed
  21. Antioxid Redox Signal. 2009 Feb;11(2):251-66 - PubMed
  22. Br J Pharmacol. 2011 Oct;164(3):839-52 - PubMed
  23. J Physiol. 2003 Jul 15;550(Pt 2):563-74 - PubMed
  24. J Physiol. 2012 Dec 15;590(24):6269-75 - PubMed
  25. J Appl Physiol (1985). 2004 Aug;97(2):731-8 - PubMed
  26. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):287-95 - PubMed
  27. Br J Pharmacol. 1992 Feb;105(2):429-35 - PubMed
  28. J Appl Physiol (1985). 1999 Nov;87(5):1741-6 - PubMed
  29. Am J Physiol. 1997 Jul;273(1 Pt 2):H156-63 - PubMed
  30. J Physiol. 2007 Sep 15;583(Pt 3):855-60 - PubMed
  31. Auton Neurosci. 2015 Mar;188:64-8 - PubMed
  32. J Physiol. 1996 Apr 15;492 ( Pt 2):419-30 - PubMed
  33. Physiol Rev. 1983 Jan;63(1):1-205 - PubMed
  34. Exerc Sport Sci Rev. 2015 Jan;43(1):5-13 - PubMed
  35. J Physiol. 2004 Jun 1;557(Pt 2):599-611 - PubMed
  36. J Appl Physiol (1985). 1998 Jun;84(6):1976-81 - PubMed
  37. Am J Physiol Regul Integr Comp Physiol. 2006 Mar;290(3):R546-52 - PubMed
  38. Exp Physiol. 2013 May;98(5):988-98 - PubMed
  39. J Physiol. 2000 Dec 15;529 Pt 3:849-61 - PubMed
  40. J Physiol. 2011 Apr 1;589(Pt 7):1847-57 - PubMed
  41. Pflugers Arch. 1976 Mar 11;362(1):85-94 - PubMed
  42. J Appl Physiol (1985). 2010 Sep;109(3):768-77 - PubMed
  43. Acta Physiol (Oxf). 2011 Jul;202(3):271-84 - PubMed
  44. Science. 1986 Nov 14;234(4778):868-70 - PubMed
  45. J Appl Physiol (1985). 1993 Oct;75(4):1911-6 - PubMed
  46. Circ Res. 2001 Oct 12;89(8):650-60 - PubMed
  47. Am J Physiol Regul Integr Comp Physiol. 2000 Feb;278(2):R400-6 - PubMed
  48. Am J Physiol. 1999 Jun;276(6 Pt 2):H1951-60 - PubMed
  49. J Physiol. 2001 Nov 1;536(Pt 3):937-46 - PubMed
  50. Circ Res. 1962 Sep;11:370-80 - PubMed
  51. Biochem Biophys Res Commun. 1996 Oct 3;227(1):88-93 - PubMed
  52. J Vasc Res. 2000 Jul-Aug;37(4):297-302 - PubMed
  53. Am J Physiol Heart Circ Physiol. 2001 Oct;281(4):H1734-41 - PubMed
  54. J Cardiovasc Pharmacol. 1994 May;23(5):747-56 - PubMed
  55. Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2001-7 - PubMed

Publication Types