Display options
Share it on

Front Microbiol. 2017 Oct 04;8:1900. doi: 10.3389/fmicb.2017.01900. eCollection 2017.

Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water.

Frontiers in microbiology

Michael D Besmer, Jürg A Sigrist, Ruben Props, Benjamin Buysschaert, Guannan Mao, Nico Boon, Frederik Hammes

Affiliations

  1. Drinking Water Microbiology Group, Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
  2. Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland.
  3. Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.
  4. Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China.

PMID: 29085343 PMCID: PMC5649192 DOI: 10.3389/fmicb.2017.01900

Abstract

Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater) can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination). Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC) and intact (ICC) cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change), significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl

Keywords: bacterial dynamics; continuous real-time flow cytometry; disinfection; drinking water; kinetics

References

  1. Nat Biotechnol. 1998 Jul;16(7):633-8 - PubMed
  2. J Appl Microbiol. 2005;99(1):175-86 - PubMed
  3. PLoS One. 2016 Oct 28;11(10 ):e0164445 - PubMed
  4. Front Microbiol. 2014 Jun 02;5:265 - PubMed
  5. Water Res. 2013 Dec 1;47(19):7131-42 - PubMed
  6. Environ Sci Technol. 2014 Apr 1;48(7):4038-47 - PubMed
  7. J Water Health. 2015 Mar;13(1):34-41 - PubMed
  8. Water Res. 2016 Sep 15;101:490-497 - PubMed
  9. Water Res. 2011 Jan;45(3):961-79 - PubMed
  10. Water Environ Res. 2007 Mar;79(3):233-45 - PubMed
  11. J Biotechnol. 2011 Jul 20;154(4):240-7 - PubMed
  12. Epidemiol Infect. 2011 Jul;139(7):1105-13 - PubMed
  13. Water Sci Technol. 2001;43(12):67-71 - PubMed
  14. Curr Opin Biotechnol. 2010 Feb;21(1):85-99 - PubMed
  15. Water Res. 2011 Jan;45(3):1490-500 - PubMed
  16. J Toxicol Environ Health A. 2002 Nov 8;65(21):1635-823 - PubMed
  17. J Water Health. 2011 Sep;9(3):569-76 - PubMed
  18. Water Res. 2010 Oct;44(18):5323-33 - PubMed
  19. PLoS One. 2013 Nov 14;8(11):e80117 - PubMed
  20. Water Res. 2017 Mar 15;111:66-73 - PubMed
  21. Water Res. 2014 Nov 15;65:224-34 - PubMed
  22. Res Microbiol. 2015 Apr;166(3):215-9 - PubMed
  23. Crit Rev Microbiol. 2015;41(3):366-73 - PubMed
  24. Sci Rep. 2016 Apr 04;6:23935 - PubMed
  25. Int J Food Microbiol. 2000 Mar 10;54(1-2):123-6 - PubMed
  26. Bioconjug Chem. 2014 Aug 20;25(8):1492-500 - PubMed
  27. J Infect Dis. 1999 Dec;180(6):1771-6 - PubMed
  28. Analyst. 2003 Apr;128(4):320-2 - PubMed
  29. J Microbiol Methods. 2000 Sep;42(1):97-114 - PubMed
  30. Can J Microbiol. 1999 Aug;45(8):709-15 - PubMed
  31. Cytometry A. 2012 Jun;81(6):508-16 - PubMed
  32. Water Sci Technol. 2003;47(3):7-14 - PubMed
  33. Water Res. 2016 Sep 15;101:617-627 - PubMed
  34. Water Res. 2005 Sep;39(15):3618-28 - PubMed
  35. Water Res. 2011 Jan;45(2):741-7 - PubMed
  36. Microbiology. 2006 Jun;152(Pt 6):1719-29 - PubMed
  37. Microb Cell Fact. 2013 Oct 31;12:100 - PubMed
  38. Water Res. 2017 Apr 15;113:191-206 - PubMed
  39. Int J Environ Health Res. 2003 Jun;13(2):181-97 - PubMed
  40. Appl Environ Microbiol. 2007 May;73(10):3283-90 - PubMed
  41. Cytometry. 1999 Mar 1;35(3):235-41 - PubMed
  42. BMC Public Health. 2006 May 25;6:141 - PubMed
  43. Water Res. 2014 Nov 1;64:309-320 - PubMed
  44. J Water Health. 2017 Feb;15(1):83-96 - PubMed
  45. Front Microbiol. 2014 Jun 04;5:273 - PubMed
  46. Sci Total Environ. 2017 Dec 1;599-600:227-236 - PubMed
  47. Water Res. 2016 Dec 15;107:11-18 - PubMed
  48. Cytometry A. 2013 Jun;83(6):561-7 - PubMed
  49. J Water Health. 2003 Mar;1(1):3-14 - PubMed
  50. Sci Rep. 2016 Dec 07;6:38462 - PubMed
  51. Lett Appl Microbiol. 1999 Jul;29(1):42-7 - PubMed

Publication Types