Display options
Share it on

Front Microbiol. 2017 Oct 10;8:1964. doi: 10.3389/fmicb.2017.01964. eCollection 2017.

Magnitude and Mechanism of Siderophore-Mediated Competition at Low Iron Solubility in the .

Frontiers in microbiology

Konstanze T Schiessl, Elisabeth M-L Janssen, Stephan M Kraemer, Kristopher McNeill, Martin Ackermann

Affiliations

  1. Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich, Switzerland.
  2. Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
  3. Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
  4. Department of Environmental Geosciences, University of Vienna, Vienna, Austria.

PMID: 29085345 PMCID: PMC5649157 DOI: 10.3389/fmicb.2017.01964

Abstract

A central question in microbial ecology is whether microbial interactions are predominantly cooperative or competitive. The secretion of siderophores, microbial iron chelators, is a model system for cooperative interactions. However, siderophores have also been shown to mediate competition by sequestering available iron and making it unavailable to competitors. The details of how siderophores mediate competition are not well understood, especially considering the complex distribution of iron phases in the environment. One pertinent question is whether sequestering iron through siderophores can indeed be effective in natural conditions; many natural environments are characterized by large pools of precipitated iron, and it is conceivable that any soluble iron that is sequestered by siderophores is replenished by the dissolution of these precipitated iron sources. Our goal here was to address this issue, and investigate the magnitude and mechanism of siderophore-mediated competition in the presence of precipitated iron. We combined experimental work with thermodynamic modeling, using

Keywords: Pseudomonas aeruginosa; competition; iron uptake; microbial interactions; pyochelin; siderophore

References

  1. Annu Rev Microbiol. 2004;58:611-47 - PubMed
  2. Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10756-61 - PubMed
  3. Am Nat. 2007 Sep;170(3):331-42 - PubMed
  4. FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37 - PubMed
  5. Environ Microbiol. 2007 Feb;9(2):425-34 - PubMed
  6. J Appl Microbiol. 1997 Nov;83(5):652-8 - PubMed
  7. J Theor Biol. 2011 Mar 21;273(1):103-14 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20059-64 - PubMed
  9. Evolution. 2017 Jun;71(6):1443-1455 - PubMed
  10. BMC Biol. 2008 May 14;6:20 - PubMed
  11. Biofouling. 2008;24(5):339-49 - PubMed
  12. Science. 2015 Nov 6;350(6261):663-6 - PubMed
  13. Trends Microbiol. 2003 Jul;11(7):330-7 - PubMed
  14. J Bacteriol. 1979 Jan;137(1):357-64 - PubMed
  15. Phytopathology. 2007 Feb;97(2):250-6 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18921-6 - PubMed
  17. PLoS Genet. 2015 Dec 08;11(12):e1005715 - PubMed
  18. Environ Microbiol. 2016 Oct;18(10 ):3258-3267 - PubMed
  19. Microbiology. 2004 Jun;150(Pt 6):1671-80 - PubMed
  20. Nat Prod Rep. 2010 May;27(5):637-57 - PubMed
  21. Microbiology. 2007 May;153(Pt 5):1508-18 - PubMed
  22. J Theor Biol. 2010 Apr 21;263(4):566-78 - PubMed
  23. Proc Biol Sci. 2003 Jan 7;270(1510):37-44 - PubMed
  24. J Bacteriol. 2012 Feb;194(3):686-701 - PubMed
  25. PLoS Pathog. 2010 Mar 12;6(3):e1000804 - PubMed
  26. Nature. 2004 Aug 26;430(7003):1024-7 - PubMed
  27. Appl Environ Microbiol. 1999 Mar;65(3):969-73 - PubMed
  28. Nat Rev Microbiol. 2006 Aug;4(8):597-607 - PubMed
  29. Proc Biol Sci. 2013 Jun 12;280(1764):20131055 - PubMed
  30. Annu Rev Microbiol. 2000;54:881-941 - PubMed
  31. PLoS Biol. 2015 Jul 09;13(7):e1002191 - PubMed
  32. Bioinformatics. 2012 Aug 1;28(15):2052-8 - PubMed
  33. Environ Microbiol. 2004 Jul;6(7):726-32 - PubMed
  34. Dalton Trans. 2012 Mar 7;41(9):2820-34 - PubMed

Publication Types