Display options
Share it on

Sci Rep. 2017 Nov 07;7(1):14758. doi: 10.1038/s41598-017-15398-2.

Quantum Light in Curved Low Dimensional Hexagonal Boron Nitride Systems.

Scientific reports

Nathan Chejanovsky, Youngwook Kim, Andrea Zappe, Benjamin Stuhlhofer, Takashi Taniguchi, Kenji Watanabe, Durga Dasari, Amit Finkler, Jurgen H Smet, Jörg Wrachtrup

Affiliations

  1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
  2. Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  3. National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  4. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany. [email protected].

PMID: 29116207 PMCID: PMC5676806 DOI: 10.1038/s41598-017-15398-2

Abstract

Low-dimensional wide bandgap semiconductors open a new playing field in quantum optics using sub-bandgap excitation. In this field, hexagonal boron nitride (h-BN) has been reported to host single quantum emitters (QEs), linking QE density to perimeters. Furthermore, curvature/perimeters in transition metal dichalcogenides (TMDCs) have demonstrated a key role in QE formation. We investigate a curvature-abundant BN system - quasi one-dimensional BN nanotubes (BNNTs) fabricated via a catalyst-free method. We find that non-treated BNNT is an abundant source of stable QEs and analyze their emission features down to single nanotubes, comparing dispersed/suspended material. Combining high spatial resolution of a scanning electron microscope, we categorize and pin-point emission origin to a scale of less than 20 nm, giving us a one-to-one validation of emission source with dimensions smaller than the laser excitation wavelength, elucidating nano-antenna effects. Two emission origins emerge: hybrid/entwined BNNT. By artificially curving h-BN flakes, similar QE spectral features are observed. The impact on emission of solvents used in commercial products and curved regions is also demonstrated. The 'out of the box' availability of QEs in BNNT, lacking processing contamination, is a milestone for unraveling their atomic features. These findings open possibilities for precision engineering of QEs, puts h-BN under a similar 'umbrella' of TMDC's QEs and provides a model explaining QEs spatial localization/formation using electron/ion irradiation and chemical etching.

References

  1. Phys Rev Lett. 2011 Mar 25;106(12):126102 - PubMed
  2. Nanoscale. 2016 Feb 21;8(7):4348-59 - PubMed
  3. Nano Lett. 2016 Nov 9;16(11):7037-7045 - PubMed
  4. Chem Commun (Camb). 2007 Nov 28;(44):4599-601 - PubMed
  5. Phys Rev Lett. 2002 Feb 4;88(5):056803 - PubMed
  6. ACS Nano. 2017 Jul 25;11(7):6652-6660 - PubMed
  7. Sci Rep. 2016 Jul 08;6:29498 - PubMed
  8. Science. 2017 Feb 3;355(6324):503-507 - PubMed
  9. Nano Lett. 2007 Mar;7(3):632-7 - PubMed
  10. Nat Commun. 2017 Sep 26;8(1):705 - PubMed
  11. J Am Chem Soc. 2009 Jan 28;131(3):890-1 - PubMed
  12. J Phys Chem Lett. 2015 Nov 5;6(21):4189-93 - PubMed
  13. Phys Rev B Condens Matter. 1996 Nov 15;54(19):13616-13622 - PubMed
  14. Phys Chem Chem Phys. 2005 Mar 21;7(6):1103-6 - PubMed
  15. Phys Rev Lett. 2017 Aug 4;119(5):057401 - PubMed
  16. Nano Lett. 2008 Feb;8(2):491-4 - PubMed
  17. Nano Lett. 2006 Sep;6(9):1955-60 - PubMed
  18. Nature. 2010 Mar 25;464(7288):571-4 - PubMed
  19. Phys Rev Lett. 2005 Feb 11;94(5):056804 - PubMed
  20. Nano Lett. 2014 Feb 12;14(2):1064-8 - PubMed
  21. J Mol Model. 2014 Apr;20(4):2197 - PubMed
  22. Nano Lett. 2015 Aug 12;15(8):4979-84 - PubMed
  23. Sci Rep. 2013;3:2657 - PubMed
  24. Phys Rev Lett. 2008 May 30;100(21):217401 - PubMed
  25. Nanotechnology. 2009 Dec 16;20(50):505604 - PubMed
  26. Microsc Microanal. 2008 Jun;14(3):274-82 - PubMed
  27. J Phys Chem A. 2007 Feb 15;111(6):1030-5 - PubMed
  28. J Phys Chem B. 2004 May 20;108(20):6193-6 - PubMed
  29. Nat Commun. 2016 Aug 25;7:12587 - PubMed
  30. ACS Nano. 2016 Aug 23;10(8):7331-8 - PubMed
  31. ACS Nano. 2014 Feb 25;8(2):1457-62 - PubMed
  32. Chem Soc Rev. 2016 Jul 11;45(14 ):3989-4012 - PubMed
  33. Science. 1995 Aug 18;269(5226):966-7 - PubMed
  34. Nat Nanotechnol. 2016 Jan;11(1):37-41 - PubMed
  35. Nano Lett. 2015 Nov 11;15(11):7567-73 - PubMed
  36. J Nanosci Nanotechnol. 2012 Feb;12(2):1251-5 - PubMed
  37. Nano Lett. 2016 Oct 12;16(10 ):6052-6057 - PubMed
  38. Nano Lett. 2016 Jul 13;16(7):4317-21 - PubMed
  39. ACS Nano. 2010 Jun 22;4(6):2979-93 - PubMed
  40. Phys Chem Chem Phys. 2010 Dec 21;12(47):15349-53 - PubMed
  41. Nat Commun. 2017 May 22;8:15093 - PubMed
  42. Nano Lett. 2015 Jan 14;15(1):165-9 - PubMed
  43. ACS Nano. 2017 Mar 28;11(3):3328-3336 - PubMed
  44. Ultramicroscopy. 2011 Jun;111(7):865-76 - PubMed
  45. Nat Nanotechnol. 2016 Jan;11(1):7-8 - PubMed
  46. Sci Rep. 2016 Sep 08;6:32662 - PubMed
  47. Phys Rev Lett. 2005 Jan 28;94(3):037405 - PubMed
  48. Opt Express. 2012 Aug 27;20(18):19956-71 - PubMed
  49. J Am Chem Soc. 2009 Apr 8;131(13):4839-45 - PubMed
  50. Acta Crystallogr A. 2005 Nov;61(Pt 6):533-41 - PubMed

Publication Types