Display options
Share it on

mSphere. 2017 Oct 18;2(5). doi: 10.1128/mSphere.00334-17. eCollection 2017.

Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms.

mSphere

Abimbola O Kolawole, Hong Q Smith, Sophia A Svoboda, Madeline S Lewis, Michael B Sherman, Gillian C Lynch, B Montgomery Pettitt, Thomas J Smith, Christiane E Wobus

Affiliations

  1. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
  2. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.

PMID: 29062895 PMCID: PMC5646240 DOI: 10.1128/mSphere.00334-17

Abstract

Ideal antiviral vaccines elicit antibodies (Abs) with broad strain recognition that bind to regions that are difficult to mutate for escape. Using 10 murine norovirus (MNV) strains and 5 human norovirus (HuNoV) virus-like particles (VLPs), we identified monoclonal antibody (MAb) 2D3, which broadly neutralized all MNV strains tested. Importantly, escape mutants corresponding to this antibody were very slow to develop and were distal to those raised against our previously studied antibody, A6.2. To understand the atomic details of 2D3 neutralization, we determined the cryo-electron microscopy (cryo-EM) structure of the 2D3/MNV1 complex. Interestingly, 2D3 binds to the top of the P domain, very close to where A6.2 binds, but the only escape mutations identified to date fall well outside the contact regions of both 2D3 and A6.2. To determine how mutations in distal residues could block antibody binding, we used molecular dynamics flexible fitting simulations of the atomic structures placed into the density map to examine the 2D3/MNV1 complex and these mutations. Our findings suggest that the escape mutant, V339I, may stabilize a salt bridge network at the P-domain dimer interface that, in an allostery-like manner, affects the conformational relaxation of the P domain and the efficiency of binding. They further highlight the unusual antigenic surface bound by MAb 2D3, one which elicits cross-reactive antibodies but which the virus is unable to alter to escape neutralization. These results may be leveraged to generate norovirus (NoV) vaccines containing broadly neutralizing antibodies.

Keywords: antibody; neutralization; noroviruses; protein structure-function

References

  1. J Virol. 2004 Jun;78(12):6233-42 - PubMed
  2. J Infect Dis. 2013 Dec 1;208(11):1877-87 - PubMed
  3. Bioinformatics. 2008 Sep 1;24(17):1953-4 - PubMed
  4. Science. 2014 Nov 7;346(6210):755-9 - PubMed
  5. J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 - PubMed
  6. J Virol. 1993 Mar;67(3):1148-58 - PubMed
  7. PLoS Pathog. 2016 Jun 29;12 (6):e1005719 - PubMed
  8. J Virol. 2010 Jun;84(11):5695-705 - PubMed
  9. Adv Virus Res. 1999;52:1-23 - PubMed
  10. J Virol. 2014 Apr;88(8):4543-57 - PubMed
  11. Clin Microbiol Infect. 2014 Aug;20(8):717-23 - PubMed
  12. PLoS Pathog. 2012;8(5):e1002705 - PubMed
  13. Antiviral Res. 2014 May;105:80-91 - PubMed
  14. J Mol Biol. 1994 Jul 8;240(2):127-37 - PubMed
  15. J Virol. 2005 Jun;79(12):7402-9 - PubMed
  16. Immunol Rev. 2017 Jan;275(1):11-20 - PubMed
  17. Curr Opin Virol. 2016 Apr;17 :110-5 - PubMed
  18. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11050-5 - PubMed
  19. Trends Mol Med. 2016 Dec;22(12 ):1047-1059 - PubMed
  20. Nature. 1996 Sep 26;383(6598):350-4 - PubMed
  21. J Gen Virol. 2014 Sep;95(Pt 9):1958-68 - PubMed
  22. MBio. 2016 Oct 4;7(5):null - PubMed
  23. Structure. 2008 May;16(5):673-83 - PubMed
  24. Science. 1999 Oct 8;286(5438):287-90 - PubMed
  25. Nat Rev Microbiol. 2010 Mar;8(3):231-41 - PubMed
  26. Biophys Rev. 2010 Feb;2(1):21-27 - PubMed
  27. Arch Virol. 2004 Sep;149(9):1673-88 - PubMed
  28. J Virol. 2003 Dec;77(24):13117-24 - PubMed
  29. J Virol. 2012 Apr;86(7):3635-46 - PubMed
  30. Arch Virol. 2007;152(9):1709-19 - PubMed
  31. PLoS Biol. 2004 Dec;2(12):e432 - PubMed
  32. Cell Host Microbe. 2014 Jun 11;15(6):668-80 - PubMed
  33. J Comput Chem. 2005 Dec;26(16):1781-802 - PubMed
  34. J Virol. 2006 Jun;80(11):5104-12 - PubMed
  35. Arch Virol Suppl. 1996;12:237-42 - PubMed
  36. Science. 2016 Sep 23;353(6306):1387-1393 - PubMed
  37. F1000Res. 2017 Jan 26;6:79 - PubMed
  38. J Virol. 2007 Oct;81(19):10460-73 - PubMed
  39. J Virol. 2006 Nov;80(21):10395-406 - PubMed
  40. J Struct Biol. 2007 Jan;157(1):281-7 - PubMed
  41. J Vis Exp. 2012 Aug 22;(66):e4297 - PubMed
  42. J Virol. 1994 Aug;68(8):5117-25 - PubMed
  43. Science. 2003 Mar 7;299(5612):1575-8 - PubMed
  44. Virus Genes. 2007 Apr;34(2):147-55 - PubMed
  45. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):344-51 - PubMed
  46. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  47. J Struct Biol. 2007 Jan;157(1):38-46 - PubMed
  48. Curr Protoc Microbiol. 2014 May 01;33:15K.2.1-61 - PubMed
  49. J Virol. 1985 Jan;53(1):137-43 - PubMed
  50. MBio. 2013 Jul 16;4(4):null - PubMed
  51. J Virol. 2007 Nov;81(22):12316-22 - PubMed
  52. J Mol Biol. 2006 Apr 14;357(5):1566-74 - PubMed
  53. J Virol. 2013 Sep;87(17):9547-57 - PubMed
  54. Science. 2016 May 20;352(6288):1001-4 - PubMed
  55. PLoS One. 2013 Jun 21;8(6):e67592 - PubMed
  56. Proteins. 2011 Mar;79(3):898-915 - PubMed
  57. Immunology. 1986 Sep;59(1):153-8 - PubMed
  58. Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9175-80 - PubMed
  59. J Gen Virol. 2007 Aug;88(Pt 8):2091-100 - PubMed
  60. Trends Microbiol. 2016 Dec;24(12 ):933-943 - PubMed
  61. J Mol Biol. 2007 Sep 21;372(3):774-97 - PubMed
  62. Clin Vaccine Immunol. 2015 Feb;22(2):168-77 - PubMed
  63. PLoS Comput Biol. 2013;9(5):e1003046 - PubMed
  64. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  65. J Virol. 2010 Jun;84(11):5836-41 - PubMed
  66. J Virol. 2008 Mar;82(5):2079-88 - PubMed
  67. J Virol. 1986 Jan;57(1):246-57 - PubMed
  68. Nat Protoc. 2015 Dec;10(12):1939-47 - PubMed
  69. J Virol. 2014 Jul;88(13):7256-66 - PubMed

Publication Types

Grant support