Display options
Share it on

J Mol Model. 2017 Oct 16;23(11):314. doi: 10.1007/s00894-017-3484-8.

Band-gap engineering of halogenated silicon nanowires through molecular doping.

Journal of molecular modeling

Francisco de Santiago, Alejandro Trejo, Alvaro Miranda, Eliel Carvajal, Luis Antonio Pérez, Miguel Cruz-Irisson

Affiliations

  1. Instituto Politécnico Nacional, ESIME-Culhuacán, Av. Santa Ana 1000, C. P. 04430, Ciudad de México, Mexico.
  2. Instituto Politécnico Nacional, ESIME-Culhuacán, Av. Santa Ana 1000, C. P. 04430, Ciudad de México, Mexico. [email protected].
  3. Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, Ciudad de México, Mexico.

PMID: 29035419 DOI: 10.1007/s00894-017-3484-8

Abstract

In this work, we address the effects of molecular doping on the electronic properties of fluorinated and chlorinated silicon nanowires (SiNWs), in comparison with those corresponding to hydrogen-passivated SiNWs. Adsorption of n-type dopant molecules on hydrogenated and halogenated SiNWs and their chemisorption energies, formation energies, and electronic band gap are studied by using density functional theory calculations. The results show that there are considerable charge transfers and strong covalent interactions between the dopant molecules and the SiNWs. Moreover, the results show that the energy band gap of SiNWs changes due to chemical surface doping and it can be further tuned by surface passivation. We conclude that a molecular based ex-situ doping, where molecules are adsorbed on the surface of the SiNW, can be an alternative path to conventional doping. Graphical abstract Molecular doping of halogenated silicon nanowires.

Keywords: Density functional theory; Halogens; Molecular doping; Silicon nanowires

References

  1. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  2. Nanotechnology. 2015 Mar 6;26(9):095201 - PubMed
  3. ACS Appl Mater Interfaces. 2016 Jun 29;8(25):16412-8 - PubMed
  4. ScientificWorldJournal. 2014 Jan 12;2014:863404 - PubMed
  5. Phys Rev B Condens Matter. 1991 Jan 15;43(3):1993-2006 - PubMed
  6. Nano Lett. 2008 Jan;8(1):173-7 - PubMed
  7. Nanoscale Res Lett. 2012 Jun 18;7(1):308 - PubMed
  8. J Mol Model. 2015 Sep;21(9):225 - PubMed
  9. J Comput Chem. 2004 Jan 30;25(2):189-210 - PubMed
  10. Nano Lett. 2010 Sep 8;10(9):3590-5 - PubMed
  11. Chem Commun (Camb). 2017 Feb 14;53(14 ):2290-2293 - PubMed
  12. Acc Chem Res. 2016 Mar 15;49(3):370-8 - PubMed
  13. ACS Appl Mater Interfaces. 2017 Feb 15;9(6):5375-5381 - PubMed
  14. Nano Lett. 2016 Jul 13;16(7):4329-34 - PubMed

Publication Types