Display options
Share it on

Front Psychol. 2017 Oct 18;8:1848. doi: 10.3389/fpsyg.2017.01848. eCollection 2017.

A Neurocomputational Approach to Trained and Transitive Relations in Equivalence Classes.

Frontiers in psychology

Ángel E Tovar, Gert Westermann

Affiliations

  1. Department of Psychology, Lancaster University, Lancaster, United Kingdom.
  2. Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.

PMID: 29093696 PMCID: PMC5651687 DOI: 10.3389/fpsyg.2017.01848

Abstract

A stimulus class can be composed of perceptually different but functionally equivalent stimuli. The relations between the stimuli that are grouped in a class can be learned or derived from other stimulus relations. If stimulus A is equivalent to B, and B is equivalent to C, then the equivalence between A and C can be derived without explicit training. In this work we propose, with a neurocomputational model, a basic learning mechanism for the formation of equivalence. We also describe how the relatedness between the members of an equivalence class is developed for both trained and derived stimulus relations. Three classic studies on stimulus equivalence are simulated covering typical and atypical populations as well as nodal distance effects. This model shows a mechanism by which certain stimulus associations are selectively strengthened even when they are not co-presented in the environment. This model links the field of equivalence classes to accounts of Hebbian learning and categorization, and points to the pertinence of modeling stimulus equivalence to explore the effect of variations in training protocols.

Keywords: Hebbian learning; categorization; equivalence classes; neurocomputational model; transitive relations

References

  1. Psychol Rev. 1992 Jan;99(1):22-44 - PubMed
  2. Neuron. 2004 Sep 30;44(1):5-21 - PubMed
  3. Neural Plast. 2012;2012:584071 - PubMed
  4. J Exp Anal Behav. 2006 Jan;85(1):107-24 - PubMed
  5. J Exp Anal Behav. 1982 Jan;37(1):5-22 - PubMed
  6. J Appl Behav Anal. 1995 Summer;28(2):115-26 - PubMed
  7. J Speech Hear Res. 1971 Mar;14(1):5-13 - PubMed
  8. Behav Processes. 1991 Nov;24(3):219-45 - PubMed
  9. Behav Processes. 2015 Mar;112:49-60 - PubMed
  10. J Exp Anal Behav. 2002 Nov;78(3):237-48 - PubMed
  11. J Exp Anal Behav. 2011 Nov;96(3):417-26 - PubMed
  12. J Exp Anal Behav. 1987 Sep;48(2):317-32 - PubMed
  13. Learn Behav. 2015 Dec;43(4):342-53 - PubMed
  14. Cogn Sci. 2010 Aug;34(6):909-57 - PubMed
  15. J Exp Anal Behav. 2003 Jul;80(1):131-57 - PubMed
  16. J Exp Anal Behav. 1996 May;65(3):643-59 - PubMed
  17. J Exp Anal Behav. 2007 May;87(3):349-65 - PubMed
  18. Brain Res. 2004 Oct 1;1022(1-2):101-9 - PubMed
  19. Curr Opin Neurobiol. 2000 Jun;10(3):358-64 - PubMed
  20. J Exp Anal Behav. 1985 Jul;44(1):35-47 - PubMed
  21. J Exp Anal Behav. 1990 May;53(3):345-58 - PubMed
  22. J Exp Anal Behav. 2011 May;95(3):343-68 - PubMed
  23. Cold Spring Harb Perspect Biol. 2012 Jun 01;4(6):null - PubMed
  24. J Appl Behav Anal. 2009 Fall;42(3):575-93 - PubMed
  25. Cereb Cortex. 2003 Jul;13(7):758-64 - PubMed
  26. Psychol Rev. 2004 Apr;111(2):309-32 - PubMed
  27. Nat Rev Neurosci. 2008 May;9(5):387 - PubMed
  28. J Exp Anal Behav. 1986 Nov;46(3):243-57 - PubMed
  29. J Exp Anal Behav. 1982 Jan;37(1):23-44 - PubMed
  30. J Exp Anal Behav. 1996 Jan;65(1):185-241 - PubMed
  31. Front Hum Neurosci. 2011 Oct 18;5:113 - PubMed
  32. J Exp Anal Behav. 2000 Jul;74(1):127-46 - PubMed
  33. Nat Rev Neurosci. 2012 Dec;13(12 ):844-58 - PubMed
  34. J Exp Anal Behav. 1995 Sep;64(2):129-45 - PubMed
  35. Neuron. 2007 May 24;54(4):627-38 - PubMed

Publication Types