Display options
Share it on

Front Plant Sci. 2017 Oct 18;8:1785. doi: 10.3389/fpls.2017.01785. eCollection 2017.

Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit.

Frontiers in plant science

Wasiye F Beshir, Victor B M Mbong, Maarten L A T M Hertog, Annemie H Geeraerd, Wim Van den Ende, Bart M Nicolaï

Affiliations

  1. Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium.
  2. Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium.
  3. Flanders Centre of Postharvest Technology, Leuven, Belgium.

PMID: 29093725 PMCID: PMC5651688 DOI: 10.3389/fpls.2017.01785

Abstract

In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom) using

Keywords: 13C-label accumulation; Braeburn; GC-MS; Malus domestica Borkh; fruit growth; metabolomics

References

  1. PLoS One. 2012;7(3):e33055 - PubMed
  2. Plant Physiol. 1982 Aug;70(2):335-9 - PubMed
  3. Curr Opin Plant Biol. 2005 Apr;8(2):174-82 - PubMed
  4. Phytochemistry. 2007 Apr;68(8):1128-38 - PubMed
  5. Mol Syst Biol. 2006;2:62 - PubMed
  6. Plant Cell Physiol. 2004 Aug;45(8):1032-41 - PubMed
  7. Trends Plant Sci. 2000 Jul;5(7):283-90 - PubMed
  8. J Exp Bot. 2008;59(11):3069-76 - PubMed
  9. Ann Bot. 2005 Mar;95(4):685-93 - PubMed
  10. J Exp Bot. 2009;60(3):1025-34 - PubMed
  11. Plant Mol Biol. 2002 Jan;48(1-2):155-71 - PubMed
  12. Plant Biol (Stuttg). 2014 May;16(3):594-606 - PubMed
  13. Curr Opin Plant Biol. 2004 Jun;7(3):309-17 - PubMed
  14. Plant Physiol. 2005 Aug;138(4):2220-32 - PubMed
  15. Biochim Biophys Acta. 2000 May 1;1465(1-2):263-74 - PubMed
  16. J Chromatogr A. 2008 Jan 4;1177(1):183-9 - PubMed
  17. J Exp Bot. 2013 Nov;64(16):5049-63 - PubMed
  18. J Plant Physiol. 2004 Sep;161(9):1011-29 - PubMed
  19. Physiol Plant. 2013 May;148(1):9-24 - PubMed
  20. J Exp Bot. 2012 Sep;63(15):5437-50 - PubMed
  21. Nat Rev Mol Cell Biol. 2004 Sep;5(9):763-9 - PubMed
  22. BMC Plant Biol. 2008 Feb 17;8:16 - PubMed
  23. Planta. 1993 Mar;189(3):329-39 - PubMed
  24. Curr Opin Plant Biol. 2004 Jun;7(3):254-61 - PubMed
  25. J Exp Bot. 2001 Jul;52(360):1383-400 - PubMed
  26. Biotechnol Bioeng. 2004 Feb 5;85(3):259-68 - PubMed
  27. Methods Mol Biol. 2014;1090:107-19 - PubMed
  28. Plant Cell. 2013 Feb;25(2):694-714 - PubMed
  29. Biotechniques. 2003 Feb;34(2):374-8 - PubMed
  30. Anal Chim Acta. 2014 May 8;824:42-56 - PubMed
  31. Plant J. 2004 Aug;39(4):668-79 - PubMed
  32. Plant Cell. 2014 Aug;26(8):3224-42 - PubMed
  33. Plant Physiol. 1991 Dec;97(4):1456-61 - PubMed
  34. Curr Opin Biotechnol. 2017 Feb;43:104-109 - PubMed
  35. Physiol Plant. 2008 Jun;133(2):229-41 - PubMed
  36. Tree Physiol. 1999 Feb;19(2):103-109 - PubMed
  37. Plant Physiol. 2003 Oct;133(2):838-49 - PubMed
  38. Metab Eng. 2007 Sep-Nov;9(5-6):419-32 - PubMed
  39. Anal Biochem. 2012 Jun 15;425(2):183-8 - PubMed
  40. Plant Methods. 2011 Jun 23;7:17 - PubMed
  41. Curr Opin Biotechnol. 2015 Aug;34:189-201 - PubMed
  42. Plant Physiol. 2004 May;135(1):574-86 - PubMed
  43. Front Plant Sci. 2017 Jul 17;8:1247 - PubMed
  44. Plant Physiol. 2015 May;168(1):74-93 - PubMed
  45. J Exp Bot. 2016 Jan;67(1):31-45 - PubMed
  46. Plant Physiol. 1989 Aug;90(4):1394-402 - PubMed
  47. Plant Physiol. 2009 Aug;150(4):1880-901 - PubMed

Publication Types