Display options
Share it on

Front Zool. 2017 Oct 30;14:49. doi: 10.1186/s12983-017-0238-5. eCollection 2017.

Differences in neurochemical profiles of two gadid species under ocean warming and acidification.

Frontiers in zoology

Matthias Schmidt, Heidrun Sigrid Windisch, Kai-Uwe Ludwichowski, Sean Lando Levin Seegert, Hans-Otto Pörtner, Daniela Storch, Christian Bock

Affiliations

  1. Alfred-Wegener-Institute Helmholtz-Centre for Polar- and Marine Research, Section Integrative Ecophysiology, Am Handelshafen 12, 27570 Bremerhaven, Germany.
  2. Department of Biology/Chemistry, University of Bremen, PO 330440, 28334 Bremen, Germany.
  3. Institute for Cell Biology and Zoology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  4. Alfred-Wegener-Institute Helmholtz-Centre for Polar- and Marine Research, Section Chemical Ecology, Am Handelshafen 12, 27570 Bremerhaven, Germany.

PMID: 29093740 PMCID: PMC5661927 DOI: 10.1186/s12983-017-0238-5

Abstract

BACKGROUND: Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO

RESULTS: We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In

CONCLUSIONS: Our results indicate a change of GABAergic metabolism in the nervous system of

Keywords: 1H–NMR-spectroscopy; GABA; HPLC; Ocean acidification; Temperature; Untargeted metabolic profiling

References

  1. J Comp Physiol B. 2003 Jul;173(5):365-78 - PubMed
  2. PLoS One. 2014 Jan 31;9(1):e87969 - PubMed
  3. J Exp Biol. 1996;199(Pt 7):1605-11 - PubMed
  4. Proc Biol Sci. 2014 Jan 22;281(1775):20132509 - PubMed
  5. Neurosci Lett. 1986 Oct 20;70(3):360-3 - PubMed
  6. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Aug 5;807(2):177-83 - PubMed
  7. Naunyn Schmiedebergs Arch Pharmacol. 1987 Sep;336(3):327-31 - PubMed
  8. Annu Rev Med. 1993;44:289-301 - PubMed
  9. J Neurophysiol. 2001 Oct;86(4):1792-802 - PubMed
  10. Front Zool. 2017 Apr 14;14 :21 - PubMed
  11. J Exp Biol. 2012 Aug 15;215(Pt 16):2891-7 - PubMed
  12. Front Zool. 2015 May 23;12:11 - PubMed
  13. Am J Physiol Regul Integr Comp Physiol. 2014 Nov 1;307(9):R1061-84 - PubMed
  14. Sci Rep. 2016 Sep 13;6:33216 - PubMed
  15. J Neural Transm (Vienna). 2009 Dec;116(12):1551-60 - PubMed
  16. J Neural Transm (Vienna). 2000;107(8-9):1027-63 - PubMed
  17. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3478-83 - PubMed
  18. J Appl Physiol Respir Environ Exerc Physiol. 1978 Mar;44(3):333-9 - PubMed
  19. Biochem J. 1974 Oct;144(1):29-35 - PubMed
  20. PLoS One. 2013 Jul 10;8(7):e68865 - PubMed
  21. Front Zool. 2013 Dec 27;10(1):81 - PubMed
  22. Cell Mol Life Sci. 2004 Aug;61(16):2020-30 - PubMed
  23. Biochem J. 1989 May 15;260(1):1-10 - PubMed
  24. J Exp Biol. 2002 May;205(Pt 10):1419-27 - PubMed
  25. Biomolecules. 2015 Apr 24;5(2):635-46 - PubMed
  26. J Exp Biol. 2014 Feb 1;217(Pt 3):323-6 - PubMed
  27. Glob Chang Biol. 2015 May;21(5):1848-55 - PubMed
  28. J Neurochem. 1966 Oct;13(10):961-5 - PubMed
  29. J Neurochem. 1977 Sep;29(3):469-76 - PubMed
  30. Neuron. 2003 Jan 23;37(2):299-309 - PubMed
  31. Mol Ecol. 2014 Jul;23(14):3469-82 - PubMed
  32. Arq Neuropsiquiatr. 2010 Feb;68(1):119-26 - PubMed
  33. NMR Biomed. 2002 Feb;15(1):37-44 - PubMed
  34. J Exp Biol. 2005 Aug;208(Pt 15):2819-30 - PubMed
  35. Am J Physiol. 1997 Jan;272(1 Pt 2):R84-9 - PubMed
  36. J Neurochem. 2006 Aug;98(3):641-53 - PubMed
  37. Prog Neurobiol. 2007 Feb;81(2):89-131 - PubMed
  38. J Neurochem. 1979 Jun;32(6):1769-80 - PubMed

Publication Types