Display options
Share it on

World J Orthop. 2017 Oct 18;8(10):754-760. doi: 10.5312/wjo.v8.i10.754. eCollection 2017 Oct 18.

Bone regeneration with osteogenic matrix cell sheet and tricalcium phosphate: An experimental study in sheep.

World journal of orthopedics

Tsutomu Kira, Manabu Akahane, Shohei Omokawa, Takamasa Shimizu, Kenji Kawate, Tadanobu Onishi, Yasuhito Tanaka

Affiliations

  1. Department of Orthopedic Surgery, Nara Medical University, Nara 634-8522, Japan. [email protected].
  2. Department of Public Health, Health Management and Policy, Nara Medical University School of Medicine, Nara 634-8522, Japan.
  3. Department of Hand Surgery, Nara Medical University, Nara 634-8522, Japan.
  4. Department of Orthopedic Surgery, Nara Medical University, Nara 634-8522, Japan.
  5. Department of Artificial Joint and Regenerative Medicine for Bone and Cartilage, Nara Medical University, Nara 634-8522, Japan.

PMID: 29094005 PMCID: PMC5656490 DOI: 10.5312/wjo.v8.i10.754

Abstract

AIM: To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate (TCP) on osteogenesis.

METHODS: Bone marrow cells were harvested from a sheep and cultured in a minimal essential medium (MEM) containing ascorbic acid phosphate (AscP) and dexamethasone (Dex). After 2 wk, the formed osteogenic matrix cell sheet was lifted from the culture dish using a scraper. Additionally, harvested bone marrow cells were cultured in MEM only as a negative control group, and in MEM with AscP, Dex, and β-glycerophosphate as a positive control group. For

RESULTS: In the

CONCLUSION: This technique for preparing highly osteoinductive TCP may promote regeneration in large bone defects.

Keywords: Bone marrow; Cell sheet; Mesenchymal stromal cell; Osteogenesis; Sheep

Conflict of interest statement

Conflict-of-interest statement: There is no conflict of interest related to this study.

References

  1. J Biomed Mater Res. 1996 Nov;32(3):333-40 - PubMed
  2. Bone Miner. 1994 Oct;27(1):57-67 - PubMed
  3. J Tissue Eng Regen Med. 2008 Jun;2(4):196-201 - PubMed
  4. J Tissue Eng Regen Med. 2010 Oct;4(7):565-76 - PubMed
  5. Adv Drug Deliv Rev. 2015 Nov 1;94:53-62 - PubMed
  6. Tissue Eng Part B Rev. 2014 Apr;20(2):126-46 - PubMed
  7. Injury. 2015 Aug;46(8):1457-64 - PubMed
  8. J Tissue Eng Regen Med. 2008 Jan;2(1):61-8 - PubMed
  9. Biomaterials. 2015 Oct;66:67-82 - PubMed
  10. Scanning. 2015 Jan-Feb;37(1):42-8 - PubMed
  11. Plast Reconstr Surg. 1984 Jun;73(6):933-8 - PubMed
  12. Endocr Rev. 2000 Aug;21(4):393-411 - PubMed
  13. Tissue Eng. 2007 Aug;13(8):2021-8 - PubMed
  14. Stem Cells. 2005 Sep;23(8):1066-72 - PubMed
  15. Tissue Eng Part C Methods. 2009 Jun;15(2):169-80 - PubMed
  16. Biomed Res Int. 2013;2013:842192 - PubMed
  17. Eur Cell Mater. 2007 Mar 02;13:1-10 - PubMed
  18. Comp Med. 2001 Aug;51(4):292-9 - PubMed
  19. Trends Mol Med. 2011 Apr;17(4):215-22 - PubMed
  20. Biomaterials. 2010 Mar;31(8):2193-200 - PubMed
  21. Endocrinology. 2001 Jul;142(7):2731-3 - PubMed
  22. Tissue Eng Part A. 2009 Mar;15(3):645-53 - PubMed
  23. Osteoporos Int. 2003;14 Suppl 3:S35-42 - PubMed
  24. Bone Joint Res. 2016 Nov;5(11):569-576 - PubMed
  25. Bone. 2015 Jun;75:32-9 - PubMed
  26. Bone. 2010 Feb;46(2):418-24 - PubMed
  27. Bone. 2010 Apr;46(4):1156-61 - PubMed
  28. J Histochem Cytochem. 2002 Mar;50(3):333-40 - PubMed
  29. Plast Reconstr Surg. 2016 May;137(5):1476-84 - PubMed
  30. Plast Reconstr Surg. 1986 Jun;77(6):948-53 - PubMed
  31. Bone. 2009 Sep;45(3):579-89 - PubMed
  32. Orthop Surg. 2012 Aug;4(3):139-44 - PubMed

Publication Types