Display options
Share it on

Front Neurol. 2017 Oct 10;8:522. doi: 10.3389/fneur.2017.00522. eCollection 2017.

Somatotopy in the Medullary Dorsal Horn As a Basis for Orofacial Reflex Behavior.

Frontiers in neurology

W Michael Panneton, BingBing Pan, Qi Gan

Affiliations

  1. Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States.
  2. Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, United States.
  3. Department of Anesthesiology, Hunan Provincial People's Hospital, Changsha, China.

PMID: 29066998 PMCID: PMC5641296 DOI: 10.3389/fneur.2017.00522

Abstract

The somatotopy of the trigeminocervical complex of the rat was defined as a basis for describing circuitry for reflex behaviors directed through the facial motor nucleus. Thus, transganglionic transport of horseradish peroxidase conjugates applied to individual nerves/peripheral receptive fields showed that nerves innervating oropharyngeal structures projected most rostrally, followed by nerves innervating snout, periocular, and then periauricular receptive fields most caudally. Nerves innervating mucosae or glabrous receptive fields terminated densely in laminae I, II, and V of the trigeminocervical complex, while those innervating hairy skin terminated in laminae I-V. Projections to lamina II exhibited the most focused somatotopy when individual cases were compared. Retrograde transport of FluoroGold (FG) deposited into the facial motor nucleus resulted in labeled neurons almost solely in lamina V of the trigeminocervical complex. The distribution of these labeled neurons paralleled the somatotopy of primary afferent fibers, e.g., those labeled after FG injections into a functional group of motoneurons innervating lip musculature were found most rostrally while those labeled after injections into motoneurons innervating snout, periocular and preauricular muscles, respectively, were found at progressively more caudal levels. Anterograde transport of injections of biotinylated dextran amine into lamina V at different rostrocaudal levels of the trigeminocervical complex confirmed the notion that the somatotopy of orofacial sensory fields parallels the musculotopy of facial motor neurons. These data suggest that neurons in lamina V are important interneurons in a simple orofacial reflex circuit consisting of a sensory neuron, interneuron and motor neuron. Moreover, the somatotopy of primary afferent fibers from the head and neck confirms the "onion skin hypothesis" and suggests rostral cervical dermatomes blend seamlessly with "cranial dermatomes." The transition area between subnucleus interpolaris and subnucleus caudalis is addressed while the paratrigeminal nucleus is discussed as an interface between the somatic and visceral nervous systems.

Keywords: facial motor nucleus; lamina V; onion skin theory; trigeminal; trigeminocervical complex

References

  1. Brain Res. 1983 May 9;267(1):19-33 - PubMed
  2. J Neurosci. 2002 Sep 15;22(18):8170-82 - PubMed
  3. Front Neurosci. 2014 Jun 05;8:136 - PubMed
  4. Brain Res. 1989 Dec 25;505(1):163-6 - PubMed
  5. J Comp Neurol. 1986 Jan 15;243(3):388-408 - PubMed
  6. Neuroscience. 2005;134(1):175-87 - PubMed
  7. J Neurophysiol. 2000 Aug;84(2):1050-61 - PubMed
  8. Exp Neurol. 1991 Mar;111(3):324-31 - PubMed
  9. Exp Brain Res. 1995;106(1):19-27 - PubMed
  10. J Neurophysiol. 1980 Mar;43(3):700-12 - PubMed
  11. Pain. 1986 Nov;27(2):219-35 - PubMed
  12. J Clin Neurophysiol. 1997 Jan;14(1):2-31 - PubMed
  13. J Comp Neurol. 1993 May 22;331(4):495-516 - PubMed
  14. Dev Biol. 2001 Nov 15;239(2):323-37 - PubMed
  15. J Comp Neurol. 1994 Sep 22;347(4):495-514 - PubMed
  16. Brain Res. 2000 Aug 18;874(1):48-65 - PubMed
  17. Neuroscience. 2006 Aug 25;141(2):889-906 - PubMed
  18. Brain Res. 1989 Dec 25;505(1):167-70 - PubMed
  19. Can J Physiol Pharmacol. 2004 Jul;82(7):474-84 - PubMed
  20. J Neurocytol. 1978 Aug;7(4):405-18 - PubMed
  21. Brain Res. 1989 Jan 16;477(1-2):66-89 - PubMed
  22. Eur J Neurosci. 2010 Sep;32(6):881-93 - PubMed
  23. J Comp Neurol. 1995 Jun 5;356(3):327-44 - PubMed
  24. Neuroscience. 1995 Dec;69(3):939-53 - PubMed
  25. Brain Res. 1986 May 7;372(2):283-9 - PubMed
  26. Somatosens Mot Res. 1990;7(2):153-83 - PubMed
  27. Brain Res. 1984 Feb 6;292(2):199-205 - PubMed
  28. J Comp Neurol. 1999 Aug 30;411(3):399-412 - PubMed
  29. J Comp Neurol. 1987 Jan 15;255(3):439-50 - PubMed
  30. J Comp Neurol. 1997 Dec 22;389(3):377-89 - PubMed
  31. Exp Neurol. 1994 Oct;129(2):251-6 - PubMed
  32. Brain Res. 1988 Sep 27;461(1):143-9 - PubMed
  33. Brain Res. 1982 Aug 26;246(2):285-91 - PubMed
  34. Anat Rec A Discov Mol Cell Evol Biol. 2005 Nov;287(1):1067-79 - PubMed
  35. Brain Res. 1990 Jun 25;521(1-2):95-106 - PubMed
  36. J Neural Transm. 1977;40(3):227-34 - PubMed
  37. J Neurocytol. 1978 Aug;7(4):419-42 - PubMed
  38. Exp Brain Res. 1994;100(1):170-4 - PubMed
  39. J Comp Neurol. 1991 Jun 1;308(1):51-65 - PubMed
  40. J Comp Neurol. 1989 May 8;283(2):248-68 - PubMed
  41. J Comp Neurol. 1988 Feb 1;268(1):91-108 - PubMed
  42. Brain Res. 1998 Feb 2;783(1):158-62 - PubMed
  43. Brain Res. 1993 Sep 3;621(1):161-6 - PubMed
  44. Brain Res. 1985 Dec 30;361(1-2):154-61 - PubMed
  45. J Neurophysiol. 1986 Feb;55(2):227-43 - PubMed
  46. J Neurosci. 2002 Sep 15;22(18):8183-92 - PubMed
  47. Brain Res. 1998 Feb 23;785(1):49-57 - PubMed
  48. J Comp Neurol. 2003 Dec 8;467(2):173-84 - PubMed
  49. Elife. 2014 Apr 30;3:e02511 - PubMed
  50. J Comp Neurol. 1981 Jul 1;199(3):327-44 - PubMed
  51. J Comp Neurol. 1985 Aug 22;238(4):440-52 - PubMed
  52. J Neurosci. 2001 Aug 15;21(16):6298-307 - PubMed
  53. J Comp Neurol. 1984 Feb 1;222(4):560-77 - PubMed
  54. Front Physiol. 2014 Jan 28;5:8 - PubMed
  55. Exp Brain Res. 2007 Jun;179(4):691-702 - PubMed
  56. Brain Res. 1972 Feb 11;37(1):137-40 - PubMed
  57. Exp Brain Res. 2003 Jan;148(2):211-8 - PubMed
  58. Exp Neurol. 1987 Jun;96(3):540-57 - PubMed
  59. Brain Res. 1989 Dec 25;505(1):91-110 - PubMed
  60. J Comp Neurol. 1991 Jun 15;308(3):418-31 - PubMed
  61. Somatosens Mot Res. 1991;8(2):165-73 - PubMed
  62. J Comp Neurol. 1991 May 22;307(4):609-25 - PubMed
  63. Int Rev Neurobiol. 2011;97:207-25 - PubMed
  64. Brain Res Bull. 1987 Oct;19(4):501-5 - PubMed
  65. J Comp Neurol. 1990 Jan 22;291(4):621-36 - PubMed
  66. J Neurophysiol. 1993 Nov;70(5):1811-21 - PubMed
  67. Brain Res. 2009 Nov 17;1298:131-44 - PubMed
  68. Behav Neurosci. 1983 Feb;97(1):62-97 - PubMed
  69. Brain Res. 1971 Sep 10;32(1):45-52 - PubMed
  70. Brain Res Bull. 1993;30(3-4):199-208 - PubMed
  71. J Anat. 1996 Oct;189 ( Pt 2):349-62 - PubMed
  72. Front Physiol. 2015 Dec 21;6:378 - PubMed
  73. Pain. 2000 Dec 1;88(3):221-4 - PubMed
  74. J Comp Neurol. 1992 Aug 22;322(4):519-27 - PubMed
  75. Physiology (Bethesda). 2013 Sep;28(5):284-97 - PubMed
  76. Neurosci Res. 1998 Mar;30(3):235-45 - PubMed
  77. Brain Res. 1972 Aug 25;43(2):561-72 - PubMed
  78. J Comp Neurol. 2015 Apr 15;523(6):921-42 - PubMed
  79. Sci Rep. 2016 Oct 13;6:35202 - PubMed
  80. J Comp Neurol. 1989 Feb 8;280(2):231-53 - PubMed
  81. Prog Mol Biol Transl Sci. 2015;134:7-23 - PubMed
  82. J Comp Neurol. 1988 Feb 22;268(4):489-507 - PubMed
  83. Nat Rev Neurosci. 2010 Apr;11(4):252-63 - PubMed
  84. Brain Res. 1990 Jan 8;506(2):267-80 - PubMed
  85. Neuroscience. 1985 Jul;15(3):779-97 - PubMed
  86. J Comp Neurol. 1989 Apr 1;282(1):1-14 - PubMed
  87. Exp Eye Res. 2010 Mar;90(3):388-96 - PubMed
  88. Eur J Neurosci. 1999 Jan;11(1):31-40 - PubMed

Publication Types