Display options
Share it on

Front Surg. 2017 Sep 29;4:57. doi: 10.3389/fsurg.2017.00057. eCollection 2017.

Holmium Laser Lithotripsy in the New Stone Age: Dust or Bust?.

Frontiers in surgery

Ali H Aldoukhi, William W Roberts, Timothy L Hall, Khurshid R Ghani

Affiliations

  1. Division of Endourology, Department of Urology, University of Michigan, Ann Arbor, MI, United States.
  2. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.

PMID: 29067287 PMCID: PMC5649137 DOI: 10.3389/fsurg.2017.00057

Abstract

Modern day holmium laser systems for ureteroscopy (URS) provide users with a range of settings, namely pulse energy (PE), pulse frequency (Fr), and pulse width (PW). These variables allow the surgeon to choose different combinations that have specific effects on stone fragmentation during URS lithotripsy. Contact laser lithotripsy can be performed using fragmentation or dusting settings. Fragmentation employs settings of low Fr and high PE to break stones that are then extracted with retrieval devices. Dusting is the utilization of high Fr and low PE settings to break stones into submillimeter fragments for spontaneous passage without the need for basket retrieval. Use of the long PW mode during lithotripsy can reduce stone retropulsion and is increasingly available in new generation lasers. During non-contact laser lithotripsy, stone fragments are rapidly pulverized in a calyx in laser bursts that result in stones breaking into fine fragments. In this review, we discuss the effect of different holmium laser settings on stone fragmentation, and the clinical implications in a very much evolving field.

Keywords: dusting; fragmentation; holmium laser; lithotripsy; ureteroscopy

References

  1. J Endourol. 1998 Apr;12(2):177-81 - PubMed
  2. J Endourol. 2016 Nov;30(11):1145-1149 - PubMed
  3. J Endourol. 2016 Feb;30(2):189-94 - PubMed
  4. Eur Urol. 2012 Jul;62(1):160-5 - PubMed
  5. J Urol. 2014 Nov;192(5):1450-6 - PubMed
  6. Curr Urol Rep. 2017 Apr;18(4):32 - PubMed
  7. J Endourol. 2008 Apr;22(4):645-50 - PubMed
  8. World J Urol. 2015 Apr;33(4):463-9 - PubMed
  9. J Endourol. 2017 Jun;31(6):598-604 - PubMed
  10. J Urol. 2015 Mar;193(3):880-4 - PubMed
  11. J Urol. 2010 Mar;183(3):1031-5 - PubMed
  12. BJU Int. 2014 Aug;114(2):261-7 - PubMed
  13. World J Urol. 2017 Nov;35(11):1765-1770 - PubMed
  14. Lasers Surg Med. 2006 Sep;38(8):762-72 - PubMed
  15. J Endourol. 2015 Nov;29(11):1221-30 - PubMed
  16. J Endourol. 1999 Oct;13(8):559-66 - PubMed
  17. Urology. 2013 Feb;81(2):442-5 - PubMed
  18. Lasers Surg Med. 1999;25(1):22-37 - PubMed
  19. J Urol. 2015 Mar;193(3):1030-5 - PubMed
  20. J Endourol. 1998 Dec;12(6):523-7 - PubMed
  21. J Urol. 2012 Mar;187(3):914-9 - PubMed
  22. J Endourol. 2015 Jan;29(1):84-9 - PubMed
  23. J Endourol. 2017 Aug;31(8):780-785 - PubMed
  24. Urology. 2017 May;103:47-51 - PubMed
  25. J Endourol. 2017 Mar;31(3):272-277 - PubMed
  26. Nat Rev Urol. 2015 May;12(5):281-8 - PubMed
  27. J Urol. 2017 Sep;198(3):702-706 - PubMed
  28. J Urol. 2006 Jun;175(6):2129-33; discussion 2133-4 - PubMed
  29. World J Urol. 2015 Apr;33(4):479-85 - PubMed
  30. Curr Urol Rep. 2014 Apr;15(4):397 - PubMed
  31. J Urol. 2012 Dec;188(6):2246-51 - PubMed
  32. Curr Opin Urol. 2016 Jan;26(1):95-106 - PubMed
  33. World J Urol. 2015 Apr;33(4):471-7 - PubMed
  34. Nat Rev Urol. 2016 Dec;13(12 ):726-733 - PubMed

Publication Types