Display options
Share it on

Oncoimmunology. 2017 Jul 20;6(10):e1353857. doi: 10.1080/2162402X.2017.1353857. eCollection 2017.

PD-1 blockade at the time of tumor escape potentiates the immune-mediated antitumor effects of a melanoma-targeting monoclonal antibody.

Oncoimmunology

Laetitia They, Henri-Alexandre Michaud, Ondine Becquart, Virginie Lafont, Bernard Guillot, Florence Boissière-Michot, Marta Jarlier, Caroline Mollevi, Jean-François Eliaou, Nathalie Bonnefoy, Laurent Gros

Affiliations

  1. IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France.
  2. Département de Dermatologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier cedex 5, France.
  3. Translational Research Department, Institut Régional du Cancer Montpellier, Montpellier, France.
  4. Biometrics Unit, Institut Régional du Cancer Montpellier, Montpellier, France.
  5. Département d'Immunologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier cedex 5, France.

PMID: 29123966 PMCID: PMC5665071 DOI: 10.1080/2162402X.2017.1353857

Abstract

Tumor antigen-targeting monoclonal antibodies (TA-targeting mAbs) are used as therapeutics in many malignancies and their capacity to mobilize the host immunity puts them at the forefront of anti-cancer immunotherapies. Both innate and adaptive immune cells have been associated with the therapeutic activity of such antibodies, but tumor escape from mAb-induced tumor immune surveillance remains one of the main clinical issues. In this preclinical study, we grafted immunocompetent and immunocompromised mice with the B16F10 mouse melanoma cell line and treated them with the TA99 TA-targeting mAb to analyze the immune mechanisms associated with the tumor response and resistance to TA99 monotherapy. In immunocompetent mice TA99 treatment strongly increased the fraction of CD8 and CD4 effector T cells in the tumor compared with isotype control, highlighting the specific immune modulation of the tumor microenvironment by TA99. However, in most mice, TA99 immunotherapy could not prevent immune effector exhaustion and the recruitment of regulatory CD4 T cells and consequently tumor escape from immune surveillance. Remarkably, anti-PD-1 treatment at the time of tumor emergence restored the Th1 effector functions of CD4 and CD8 T cells as well as of natural killer and γδT cells, which translated into a significant slow-down of tumor progression and extended survival. Our findings provide the first evidence that PD-1 blockade at the time of tumor emergence can efficiently boost the host anti-tumor immune response initiated several weeks before by the TA-targeting mAb. These results are promising for the design of combined therapies to sensitize non-responder or resistant patients.

Keywords: anti-tumor immunity; combined therapies; immunomodulation; long-lasting effects; tumor escape; tumor immune microenvironment; tumor-targeting monoclonal antibodies

References

  1. Blood. 2009 Aug 20;114(8):1537-44 - PubMed
  2. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16254-9 - PubMed
  3. Ann Oncol. 2013 Jul;24(7):1813-21 - PubMed
  4. Ann Oncol. 2015 Dec;26(12 ):2429-36 - PubMed
  5. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):652-6 - PubMed
  6. J Immunother Cancer. 2016 Aug 16;4:44 - PubMed
  7. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7142-7 - PubMed
  8. Nat Med. 2007 Sep;13(9):1050-9 - PubMed
  9. Cancer Res. 2014 Feb 15;74(4):1045-55 - PubMed
  10. Cancer Cell. 2010 Aug 9;18(2):160-70 - PubMed
  11. Nat Med. 2016 Dec;22(12 ):1402-1410 - PubMed
  12. Nat Rev Clin Oncol. 2016 Mar;13(3):143-58 - PubMed
  13. PLoS Pathog. 2010 Jun 10;6(6):e1000948 - PubMed
  14. Front Immunol. 2015 Jun 26;6:310 - PubMed
  15. Science. 2015 Apr 3;348(6230):56-61 - PubMed
  16. Blood. 2013 Oct 31;122(18):3160-4 - PubMed
  17. Proc Natl Acad Sci U S A. 2016 May 10;113(19):E2646-54 - PubMed
  18. J Clin Oncol. 2012 Jun 10;30(17 ):2046-54 - PubMed
  19. Leukemia. 2015 Apr;29(4):947-57 - PubMed
  20. J Immunol. 2010 Apr 1;184(7):4006-16 - PubMed
  21. J Clin Invest. 2015 Sep;125(9):3338-46 - PubMed
  22. Cancer Immunol Res. 2013 Dec;1(6):365-72 - PubMed
  23. Blood. 2009 Apr 16;113(16):3809-12 - PubMed
  24. Eur J Immunol. 2010 Jan;40(1):22-35 - PubMed
  25. Cancer Res. 2017 Jan 15;77(2):312-319 - PubMed
  26. N Engl J Med. 2011 Jun 30;364(26):2517-26 - PubMed
  27. J Virol. 2010 Oct;84(19):10169-81 - PubMed
  28. Cancer Res. 2012 Feb 15;72 (4):887-96 - PubMed
  29. Pharmacogenomics J. 2016 Oct;16(5):472-7 - PubMed
  30. J Immunol. 2012 Dec 15;189(12):5513-7 - PubMed
  31. Lancet Oncol. 2015 Apr;16(4):375-84 - PubMed
  32. J Clin Oncol. 2008 Apr 10;26(11):1789-96 - PubMed
  33. Clin Cancer Res. 2016 Nov 1;22(21):5204-5210 - PubMed
  34. J Virol. 2005 May;79(10):6272-80 - PubMed
  35. Ann Oncol. 2014 Aug;25(8):1544-50 - PubMed
  36. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E319-27 - PubMed
  37. J Exp Med. 2010 Sep 27;207 (10 ):2175-86 - PubMed
  38. Transplantation. 2010 Mar 15;89(5):527-36 - PubMed
  39. J Immunol. 2013 Jan 1;190(1):489-96 - PubMed
  40. J Virol. 2008 Feb;82(3):1339-49 - PubMed
  41. Blood. 2013 Feb 14;121(7):1102-11 - PubMed
  42. Cancer Res. 2006 Feb 1;66(3):1261-4 - PubMed
  43. Ann Oncol. 2016 Dec;27(12 ):2242-2250 - PubMed
  44. J Immunol. 2008 Nov 15;181(10):6829-36 - PubMed
  45. Blood. 2010 Aug 12;116(6):926-34 - PubMed
  46. Cancer Immunol Res. 2014 Jul;2(7):632-42 - PubMed
  47. Ann Hematol. 2016 Sep;95(9):1503-12 - PubMed

Publication Types