Display options
Share it on

FEBS Open Bio. 2017 Oct 03;7(11):1768-1777. doi: 10.1002/2211-5463.12319. eCollection 2017 Nov.

Transmembrane thioredoxin-related protein TMX1 is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum.

FEBS open bio

Yoshiyuki Matsuo, Kiichi Hirota

Affiliations

  1. Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Japan.

PMID: 29123984 PMCID: PMC5666389 DOI: 10.1002/2211-5463.12319

Abstract

Numerous secretory and membrane proteins undergo post-translational modifications in the endoplasmic reticulum (ER), and the formation of disulfide bonds is a modification that is critical for proper protein folding. The mammalian ER contains a large family of oxidoreductases that are considered to catalyze thiol/disulfide exchange and ensure the maintenance of a redox environment within the ER. Disruption of ER homeostasis causes an accumulation of misfolded and unfolded proteins, a condition termed ER stress. Despite advances in our understanding of the ER stress response and its downstream signaling pathway, it remains unclear how ER redox balance is controlled and restored in the stressed ER. In this study, we determined that brefeldin A (BFA)-induced protein accumulation in the ER triggers reversible oxidation of transmembrane thioredoxin-related protein 1 (TMX1). Conversion of TMX1 to the oxidized state preceded the induction of immunoglobulin-binding protein, a downstream marker of ER stress. Oxidized TMX1 reverted to the basal reduced state after BFA removal, and our results suggest that glutathione is involved in maintaining TMX1 in the reduced form. These findings provide evidence for a redox imbalance caused by protein overload, and demonstrate the existence of a pathway that helps restore ER homeostasis during poststress recovery.

Keywords: disulfide bond; endoplasmic reticulum; oxidoreductase; protein folding; redox

References

  1. Biosci Biotechnol Biochem. 2013;77(4):729-35 - PubMed
  2. J Biol Chem. 1982 Nov 25;257(22):13704-12 - PubMed
  3. Annu Rev Immunol. 1997;15:351-69 - PubMed
  4. Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91 - PubMed
  5. Methods Enzymol. 2011;490:71-92 - PubMed
  6. J Cell Biol. 1992 Mar;116(5):1071-80 - PubMed
  7. J Biol Chem. 2004 Jul 30;279(31):32667-73 - PubMed
  8. J Biol Chem. 2004 Dec 31;279(53):55341-7 - PubMed
  9. Antioxid Redox Signal. 2006 May-Jun;8(5-6):797-811 - PubMed
  10. EMBO Rep. 2005 Jan;6(1):28-32 - PubMed
  11. Free Radic Biol Med. 2015 Mar;80:171-82 - PubMed
  12. Science. 2008 Jul 25;321(5888):569-72 - PubMed
  13. Biochim Biophys Acta. 2013 Nov;1833(11):2425-9 - PubMed
  14. Trends Cell Biol. 1992 Aug;2(8):227-31 - PubMed
  15. Mol Biol Cell. 2015 Oct 1;26(19):3390-400 - PubMed
  16. Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29 - PubMed
  17. Diabetologia. 2009 Nov;52(11):2369-2373 - PubMed
  18. Mol Cell. 2013 Jun 27;50(6):793-804 - PubMed
  19. J Biol Chem. 2004 Sep 17;279(38):39872-9 - PubMed
  20. EMBO Rep. 2006 Mar;7(3):271-5 - PubMed
  21. Cell Struct Funct. 1989 Oct;14(5):605-16 - PubMed
  22. Arch Biochem Biophys. 2004 Mar 1;423(1):81-7 - PubMed
  23. Nature. 1988 Mar 31;332(6163):462-4 - PubMed
  24. Mol Biol Cell. 2009 Nov;20(21):4552-62 - PubMed
  25. Bone Marrow Transplant. 2013 Mar;48(3):452-8 - PubMed
  26. Antioxid Redox Signal. 2008 Jan;10(1):55-64 - PubMed
  27. J Cell Biol. 2016 Aug 15;214(4):433-44 - PubMed
  28. J Biochem. 2009 Dec;146(6):743-50 - PubMed
  29. Genes Dev. 1999 May 15;13(10 ):1211-33 - PubMed
  30. Nat Cell Biol. 1999 Jul;1(3):130-5 - PubMed
  31. J Clin Invest. 2002 Nov;110(10 ):1389-98 - PubMed
  32. Biochem J. 2015 Jul 15;469(2):279-88 - PubMed
  33. J Biol Chem. 2001 Mar 30;276(13):10032-8 - PubMed

Publication Types