Display options
Share it on

Biochem Biophys Rep. 2015 May 30;2:94-102. doi: 10.1016/j.bbrep.2015.05.008. eCollection 2015 Jul.

HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes.

Biochemistry and biophysics reports

Rodrigo A da Silva, Flavia Sammartino Mariano, Aline C Planello, Sergio R P Line, Ana Paula de Souza

Affiliations

  1. Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil.

PMID: 29124149 PMCID: PMC5668640 DOI: 10.1016/j.bbrep.2015.05.008

Abstract

Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into

Keywords: Anchorage blockade; Anoikis-resistance; DNA methylation; Epigenetics; Oxidative stress; Reactive oxygen species

References

  1. Am J Transl Res. 2013 Aug 15;5(5):497-509 - PubMed
  2. Nature. 2013 Aug 8;500(7461):222-6 - PubMed
  3. J Nutr. 2006 Nov;136(11):2748-53 - PubMed
  4. IUBMB Life. 2008 May;60(5):301-7 - PubMed
  5. Free Radic Biol Med. 2004 Jun 15;36(12):1635-44 - PubMed
  6. Biochim Biophys Acta. 2013 Dec;1833(12 ):3481-3498 - PubMed
  7. Nat Rev Cancer. 2014 Sep;14(9):632-41 - PubMed
  8. Epigenetics. 2011 Apr;6(4):450-64 - PubMed
  9. Cancer Res. 2007 Feb 1;67(3):946-50 - PubMed
  10. J Cell Sci. 2013 Jan 1;126(Pt 1):21-9 - PubMed
  11. Nature. 2009 Sep 3;461(7260):109-13 - PubMed
  12. PLoS Genet. 2011 Feb 03;7(2):e1001286 - PubMed
  13. J Cell Physiol. 2002 Jul;192(1):1-15 - PubMed
  14. Cell. 2008 Jun 27;133(7):1145-8 - PubMed
  15. Crit Rev Oncol Hematol. 2008 Oct;68(1):1-11 - PubMed
  16. Cell Death Differ. 2008 May;15(5):867-78 - PubMed
  17. Nucleic Acids Res. 1999 Jun 1;27(11):2291-8 - PubMed
  18. BMJ Open. 2012 Oct 17;2(5):null - PubMed
  19. Clin Chim Acta. 2012 May 18;413(9-10):869-74 - PubMed
  20. Biochem Soc Trans. 2007 Nov;35(Pt 5):1147-50 - PubMed
  21. Epigenetics. 2013 Jul;8(7):730-8 - PubMed
  22. Free Radic Biol Med. 2008 Apr 15;44(8):1624-36 - PubMed
  23. J Immunol Methods. 1983 Dec 16;65(1-2):55-63 - PubMed
  24. Mol Biotechnol. 2010 Jan;44(1):71-81 - PubMed
  25. Anal Biochem. 1998 Dec 15;265(2):290-8 - PubMed
  26. Obstet Gynecol Int. 2010;2010:302051 - PubMed
  27. PLoS One. 2012;7(5):e37009 - PubMed
  28. Neoplasia. 2006 Mar;8(3):231-41 - PubMed
  29. Biochem Pharmacol. 2008 Dec 1;76(11):1352-64 - PubMed
  30. Biochemistry. 1994 Apr 19;33(15):4449-53 - PubMed
  31. Neoplasia. 2007 Dec;9(12):1111-21 - PubMed
  32. Curr Opin Cell Biol. 1997 Oct;9(5):701-6 - PubMed
  33. J Invest Dermatol. 1997 Dec;109(6):722-7 - PubMed
  34. Carcinogenesis. 1993 May;14(5):833-9 - PubMed
  35. J Biol Chem. 1995 May 12;270(19):11327-37 - PubMed
  36. Clin Epigenetics. 2011 Aug;2(2):315-30 - PubMed
  37. Cancer Biol Ther. 2005 Oct;4(10):1138-43 - PubMed
  38. Mol Aspects Med. 2008 Feb-Apr;29(1-2):1-8 - PubMed
  39. Nature. 1986 May 15-21;321(6067):209-13 - PubMed

Publication Types