Display options
Share it on

Nanomaterials (Basel). 2017 Oct 25;7(11). doi: 10.3390/nano7110348.

Unraveling the Origin of Magnetism in Mesoporous Cu-Doped SnO₂ Magnetic Semiconductors.

Nanomaterials (Basel, Switzerland)

Junpeng Fan, Enric Menéndez, Miguel Guerrero, Alberto Quintana, Eugen Weschke, Eva Pellicer, Jordi Sort

Affiliations

  1. Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain. [email protected].
  2. Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain. [email protected].
  3. Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain. [email protected].
  4. Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain. [email protected].
  5. Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany. [email protected].
  6. Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain. [email protected].
  7. Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain. [email protected].
  8. Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain. [email protected].

PMID: 29068367 PMCID: PMC5707565 DOI: 10.3390/nano7110348

Abstract

The origin of magnetism in wide-gap semiconductors doped with non-ferromagnetic 3d transition metals still remains intriguing. In this article, insights in the magnetic properties of ordered mesoporous Cu-doped SnO₂ powders, prepared by hard-templating, have been unraveled. Whereas, both oxygen vacancies and Fe-based impurity phases could be a plausible explanation for the observed room temperature ferromagnetism, the low temperature magnetism is mainly and unambiguously arising from the nanoscale nature of the formed antiferromagnetic CuO, which results in a net magnetization that is reminiscent of ferromagnetic behavior. This is ascribed to uncompensated spins and shape-mediated spin canting effects. The reduced blocking temperature, which resides between 30 and 5 K, and traces of vertical shifts in the hysteresis loops confirm size effects in CuO. The mesoporous nature of the system with a large surface-to-volume ratio likely promotes the occurrence of uncompensated spins, spin canting, and spin frustration, offering new prospects in the use of magnetic semiconductors for energy-efficient spintronics.

Keywords: diluted magnetic semiconductors; mesoporous SnO2 particles; nanocasting

References

  1. ChemSusChem. 2014 Jul;7(7):2037-47 - PubMed
  2. Phys Rev Lett. 2008 Aug 15;101(7):077201 - PubMed
  3. ACS Appl Mater Interfaces. 2012 Nov;4(11):6252-60 - PubMed
  4. ACS Appl Mater Interfaces. 2013 May 22;5(10):4320-7 - PubMed
  5. J Nanosci Nanotechnol. 2011 Dec;11(12):11023-7 - PubMed
  6. Phys Rev Lett. 2008 Aug 29;101(9):097206 - PubMed
  7. Nat Commun. 2016 Jan 18;7:10295 - PubMed
  8. J Synchrotron Radiat. 2005 Mar;12(Pt 2):224-33 - PubMed
  9. Phys Chem Chem Phys. 2014 Feb 28;16(8):3835-45 - PubMed
  10. Science. 2011 May 27;332(6033):1065-7 - PubMed
  11. Science. 2007 Jan 19;315(5810):349-51 - PubMed
  12. Phys Rev Lett. 2011 Nov 11;107(20):207206 - PubMed
  13. J Am Chem Soc. 2002 Jan 30;124(4):615-9 - PubMed
  14. Nat Mater. 2010 Dec;9(12):965-74 - PubMed
  15. Science. 1998 Aug 14;281(5379):951-5 - PubMed

Publication Types